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Abstract 
A probabilistic algorithm for unsupervised learning of 
categories using internal comparisons is presented.  The 
Bayesian merging algorithm uses parent category prototypes 
to facilitate basic category comparisons.  Our model takes 
on the new task of learning internal representation with no 
explicit feedback.  We assume that humans make implicit 
comparisons between novel categories and merge categories 
they consider similar, in a probabilistic sense.  We find that 
the algorithm out performs simple data incorporation, and 
that the algorithm supplemented by feature comparisons did 
even better.  The consideration of context brought about by 
feature comparison allows the model to generalize over 
noisy examples.  However, a more compact representation is 
desired. 

Introduction   
Humans can learn nouns easily given a few examples and 
almost no explicit feedback.  A simple explicit memory 
model can account for neither the rapidity nor the accuracy 
of learning.  Thus we must rely on a model of implicit 
memory that accounts for the effects of past experience.  
One approach is to represent nouns as basic categories with 
uncertain feature values.  As more data are incorporated, 
the categories look more and more like what the noun 
represents in the real world.  Since categories are built up 
from experience, we expect physical interaction to improve 
category acquisition.  We suggest that implicit category 
comparisons (via semantic priming) model this physical 
interaction. 
 Much of the modeling ideas presented are inspired by 
Schooler et. al. (2001).  As in Schooler et. al., we apply 
rational analysis (Anderson, 1990) to the modeling of 
results from psychological experiments.  The REM model 
of Schooler et. al. was an attempt to account for episodic 
retrieval via a model that assumes that priming acts to 
“alter the word’s lexical-semantic memory representation” 
(2001).  Justification for direct alteration of the 
representation are given in Schooler et. al.  Our priming 
effects will be based on comparison tasks.  Most objections 
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to Bayesian models point to the lack of plausibility for the 
human mind to perform probabilistic computations during 
experimental tasks.  Our model will make simplifying 
assumptions on the REM model by using simpler Bayesian 
methods that we assume are at least can be computed 
neurally.  Moreover, we will apply Bayesian reasoning to 
learning a best current model.  We will simplify the 
algorithm by making some assumptions on human 
perceptual capabilities and mental representations. 
 We focused on animal categories so as to simplify direct 
comparison with psychological experiments.  Ideas 
suggested here are relevant for text categorization as well.  
In particular, any domain that can be decomposed into 
hierarchical categories can be modeled.  Our algorithm 
uses a simple representation of features and categories to 
facilitate comparison.  In a real-world application, 
Bayesian network representations should be constructed for 
both basic and parent categories.  We’ll suggest how this 
can be done later, although the implementation is only at an 
experimental phase. 

Assumptions 
First, we assume that no perceptual errors are made during 
learning and testing.  That is, there is no probability 
distribution associated with input animal features for each 
example.  The lack of errors in perception does not, 
however, imply that the input data is noiseless.  We assume 
that the distributions of attributes of an animal are 
independent and jointly Gaussian.  Data are generated 
using normal distributions with pre-determined means and 
variances that reflect the attribute domain for each animal.  
Noisy examples with random features are also fed into the 
model periodically.  The assumption suggests that the only 
probabilistic aspect of category-learning is captured by our 
model.  Thus, our model (and not the perceptual system) is 
responsible for handling noisy data. 
 Second, only two levels of categories are relevant to our 
task.  Our basic categories consist of animal types.  In 
particular, data for ant, snail, frog, cat, wolf, cow, and 
whale were given as input.  Note, however, that the model 
forms abstract models of the data, so no actual label is 



given to any category.  The idea is that a category is 
described by average feature values and a measure of the 
spread of feature values.  It is the model’s task to minimize 
the complexity of sets of categories while maximizing the 
probability of correctly identifying the category of any 
example given the feature values.  This can be done using 
inference on a belief network.  Our superordinate parent 
categories consist of graded conceptual categories 
involving the animal types.  For example, the large animal 
category should include whale and cow as salient 
examples, with wolf, and possibly cat having graded 
membership.  Graded membership is not represented 
explicitly, however.  The model will keep track of one best 
prototype, which can be updated with a given probability 
during comparison tasks.  We construct conceptual 
categories using the different features associated with 
animals.  In particular, large animal, small animal, cute 
animal, hideous animal, ferocious animal, and tame animal 
were used.  Ideally, we should model other objects as well 
and allow our conceptual categories to be simply large, 
small, cute, hideous, etc.  This makes the model more 
general, less domain-dependent, but harder to assess.  Thus 
we stick to animals at present. 
 Third, inferences and comparisons done on particular 
members of basic categories are necessary for learning and 
structuring both basic and superordinate parent categories.  
Here we focus on feature value comparisons.  We can ask, 
for example, “which animal is larger, cat or frog?”  Luo 
(2000) reviews these tasks.  In modeling early 
development, we can associate the semantic priming that 
results from querying the subject with changes in the 
underlying categories.  Our claim is that these changes 
result from comparison of basic category feature values 
with prototype feature values.  In the example above, size 
feature values for cat and frog are compared with the 
prototype large animal feature value.  Changes are made to 
the abstract categorical representations of cat and frog size 
values and spreads.  Prototype values are updated as 
needed.  One natural question that arises is: if feature value 
estimates are already kept by our basic category 
representation, couldn’t we just compare the estimates and 
return the appropriate category (in this case, cat for the 
larger animal)?  There are three problems with this 
approach.  First, the approach predicts that all comparisons 
should take the same amount of time on average.  This has 
been shown to be false (Banks et. al., 1976).  For example, 
it is much faster to decide between whale and ant than cat 
and frog.  Second, the approach predicts that no errors 
could occur.  For example, frogs would always be judged 
smaller than cats.  This does not hold experimentally (Luo, 
2000).  We need, instead, a model that is generally true, but 
can give wrong answers in some contexts.  Third, there are 
uncertainties associated with feature estimates (This is why 
we need a measure of spread).  For example, some cats 
(tigers) are very large while other cats (kitty) are very 
small.  As more examples of cats are shown to the system, 
the model becomes better and better at estimating the 
relative size of cats, but it is never absolutely sure that cats 

are smaller than wolves.  Our approach is to compare cat 
and wolf sizes with the prototypical size.  We can model 
differences in judgment reaction times by relative distances 
between category and prototype size feature values.  You 
can think of our approach as a variance reduction 
technique.  We are leveraging our knowledge about 
prototypical cases, which also have associated uncertainty 
values. 
 Fourth, there exist abstract category representations in 
the mind independent of, but influenced by, linguistic 
labels.  Our model keeps abstract categories with no 
particular linguistic interpretation.  The reason for this is 
that synonyms abound in the real world.  While there is 
evidence that no “exact” synonyms exist in the technical 
sense, our model of the mind relies on generalization over 
similar word senses.  Hence, frog and toad may refer to 
relatively similar animals that have similar values with 
respect to our set of features.  A child may not be able to 
distinguish (at least at first) between these similar animal 
types.  Thus we need a structure that represents the features 
of a frog-toad without labeling it.  We can then compare 
these abstract categories amongst themselves and perform 
inferences purely on the basis of feature structures.  Words 
with different senses (cat, for example) are described by 
different categories while different words denoting animals 
with similar features (frog and toad, for example) are 
described by the same category.  We hope to show in the 
future that the linguistic label associated with an abstract 
category is a probability distribution over words or phrases 
acquired from experience.  Instead of saying, for example, 
that the word cat has two senses (kitty and tiger), we say 
that abstract category A has a probability of 0.95 of being 
labeled “cat” and abstract category B has a probability of 
0.5 of being labeled “cat.”  With experience, the abstract 
categories become finer because the variances of the 
feature values become smaller.  In the limit of infinite 
experience, the two word senses of “cat” will be described 
by separate abstract categories with labeling probability 
1.0, because a separate abstract category will describe 
“tiger” with probability 1.0.  We hope that someone will 
prove the following claim (it shouldn’t be hard): Given a 
pre-defined, finite, sufficiently “nice” set of training 
examples, the category partitions formed by the algorithm 
will converge in probability to a set of non-overlapping 
category distributions (in the sense of zero variance feature 
values) as the number of sweeps goes to infinity.  This 
statement would then imply that each category would 
eventually be labeled by its own word.  In this paper, we 
assume that most likely labels are found magically by some 
other mechanism.  We don’t really have to worry about 
possible ambiguity here because our comparison 
simulations are done with abstract categories and our 
prototypes generalize over the entire domain independently 
of particular word labels.  Note, however, that a prototype 
is a single instance from our basic categories.  When 
humans are confronted with a question regarding size, 
however, they don’t automatically think of, say, a whale.  
Our assumption here is that they performs subconscious 



comparisons with a vague superordinate prototype whose 
variance is averaged over a few salient examples. 
 Lastly, we assume that our direct representation of 
human semantic processing can be efficiently implemented 
neurally.  One approach is to translate our mean-variance 
representation into a simple Bayesian network.  We’ll 
describe this after giving the model and the algorithm. 

Model 
The basic claim of the model is that the meaning of a noun 
in some restricted domain is its abstract representation in 
relation to all other nouns in the domain.  (This, of course, 
is nothing new; see, for example, (Anderson, 1990).)  
Moreover, this relationship is captured by comparisons 
with sets of superordinate prototypes that capture general 
characteristics of objects referred to by basic terms. 
 The model acquires basic category representations by 
merging abstract models of category partitions and by 
performing inferences and comparisons using these abstract 
partitions.  Implicit reinforcements for correct and incorrect 
responses are assumed to be provided internally.  (This 
models controlled experimental paradigms in which the 
subject is given a pair of objects whose feature values fall 
on some subjective scale.  Errors are frequently caused by 
priming and by going too fast.)  Moreover, learning 
probability distributions for category labels is assumed to 
be incremental, so that we don’t need to tell the subject not 
to say something, because she won’t say it (as the model 
predicts). 
 Thus we have abstract categories that model the internal 
representations of nouns and learning mechanisms that 
takes knowledge from the real world, and reconstructs, as 
best as they can, the entities that the nouns represent, using 
comparison-based implicit learning (Schooler et. al., 2001).  
Note that for our domain, this consists only of two 
hierarchical levels.  Extensions beyond animal types can be 
constructed by treating each superordinate category as also 
a basic category. 

Algorithm 
Both model merging and prototype formation depend on 
order of data presentation.  Since any possible merge with 
lower cost will be performed, there is a chance that the 
optimal merge will not be performed.  Similarly, since 
early experience is weighted more heavily in prototype 
formation, we may get unrepresentative prototypes fairly 
late into the learning process. 
 We chose to model prototype acquisition as “Markov.”  
That is, the mean feature value for a prototype is drawn 
from either the current value or the maximum (or 
minimum) value over subordinate categories.  As the model 
accumulates experience, it tends to stay with the current 
value; initially, it tends to choose the optimal value.  The 
idea is that a single basic category instance serves as the 
prototype, but that the variance associated with the 

prototype is estimated from the current variance and the 
difference between the optimal value and the current value.  
Hence, the model forgets the past in the sense that the 
current prototype value variance captures all we need to 
know about past prototype values.  The reason for this 
design decision is the seemingly transient nature of a 
prototype.  When we think of a cat, we are basing our 
estimates on prior knowledge about distributions of feature 
values of a cat.  When we think of a large animal, however, 
we first think of the idea of large.  Then we may think of 
some specific animal prototypical of large animals.  We 
don’t know everything about this prototype animal but we 
do know that it is large.  After using this information, the 
prototype is put away.  Our claim is that we don’t know all 
the feature value distributions of any prototype of any 
superordinate category.  Given this assumption, one 
sensible model would be to base our prototype on either the 
last prototype or the best possible prototype.  The 
probability of choosing between the two depends on 
experience.  As more and more examples are observed, we 
are less likely to switch to the best possible prototype, 
because the current prototype must already be pretty good. 
 Now, we will walk through the algorithm in detail.  An 
overview is presented in Fig. 6.  First, we create random 
examples consisting of size, cuteness, and ferocity values 
for our animal types (ant, snail, frog, cat, wolf, cow, and 
whale), with noisy examples given random features values.  
Next, we give the data to the model incrementally.  The 
model first scans through the categories to see if the new 
example can be put into an existing category.  If not, a new 
category is constructed.  After a few data incorporation 
steps, the merging algorithm is invoked.  We compute the 
cost of every pair of possible merges and choosing the best 
merge to perform.  For our purposes, we perform the first 
merge with a higher probability (lower cost) than the 
probability (cost) of the original model.  The basic idea is 
that we are trying to maximize 
 
P(Model | Data) = P(Data | Model) ⋅ P(Model) / P(Data). 

 
P(Data) can be ignored since it is the same for any merge.  
This equation is translated to: 
 

cost(Model) = α ⋅ size(Model) + (1 - α) ⋅ var(Model), 
 

where size(Model) is the total number of categories (i.e. the 
size of the partition), and var(Model) is the total variance 
of all category feature values.  The idea is that a set of data, 
a smaller model is a better, more succinct description of an 
underlying representation.  Therefore, we want to minimize 
the size of the partition by merging categories together.  
But merging requires us to recomputed the variance of 
feature values for the resulting category, which can 
increase because the two categories to be merged are 
distinct.  We should keep the variability low if we are to 
make good predictions about which category a novel set of 
feature values belongs to.  Thus we have a trade-off 
between compactness and representational power.  The 



algorithm will keep finding and merging categories until a 
merge with a lower cost cannot be found. 
 Between data incorporation steps, we periodically 
invoke the query mechanism, which models implicit 
comparisons that facilitates category-learning.  We first 
update the prototypes probabilistically by parameterizing 
the experience of a child.  We define a past experience 
factor (pef) between 0 and 1 that is initially small, but 
becomes larger as the number of sweeps increases.  With 
probability 1 minus pef, we replace our superordinate 
prototypes (large animal, small animal, cute animal, 
hideous animal, ferocious animal, tame animal) with the 
example with the optimal feature value in our category 
partition.  Since pef increases with time, we are less likely 
to change our prototypes as we obtain more and more 
experience.  Next, we find the best matching categories that 
correspond to the querying examples.  We compare these 
categories with the prototype categories for each feature.  
We explicitly change our categories by a small amount that 
is related to pef.  The larger category is moved toward the 
value of the larger prototype, the smaller category is moved 
toward the value of the smaller prototype, and similarly for 
cuteness and ferocity.  The idea is that given a pair of 
examples, we are asked to choose, for example, which 
animal is larger.  We code the target example as being large 
and the rejected example as being small.  This primes our 
future judgments on both of the examples (Luo, 2000).  
Specifically, our internal representation of the target and 
rejected examples are changed by some small factor 
determined by experience and by the distance between 
feature values of examples and prototypes.  Note that our 
prototype representation can also be changed if the target 
example feature value is “more optimal” than the prototype 
feature value.  This can happen because we only update the 
prototypes probabilistically (so the prototypes may not be 
the best prototypes). 
 Next, we discuss the translation of the model to a 
Bayesian network.  As suggested by Koller & Sahami 
(1997), we can represent categories as discrete nodes that 
serve as parents of Gaussian feature nodes.  Thus we 
specify the statistics for each feature and query the category 
node given the feature evidence.  The problem to be 
worked out is to implement an unsupervised learning 
algorithm that updates the values that the category node can 
take on as more evidence arrives.  Fig. 7 shows an early 
attempt at integration in which a superordinate parent 
category is represented just as another evidence node.  
Here we have assumed independence of each feature value.  
The superordinate category node “large” is a binary 
representation of a “decision” based on current feature 
estimates.  Note that prototype values are kept implicitly 
within the distribution for the superordinate node.  It may 
be better to use decision nodes for the superordinate 
category nodes, but we’re not sure how inference would 
work. 

Results 
Fig. 1 shows the size of the category partition, the 
categories given as examples, and the categories learned 
using no model merging and no feature comparison.  For 
simplicity, only the size feature values of the categories are 
shown.  Similar results can be plotted for the cuteness and 
ferocity dimensions.  Note that a lot of categories were 
formed despite data incorporation, because no pruning is 
allowed.  Fig. 2 shows the categories learned using model 
merging alone and Fig. 3 shows the categories learned 
using both model merging and feature comparisons.  In 
general, category partitions learned using feature 
comparisons tend to generalize a bit more, so that we 
typically get a smaller number of categories.  Note that one 
obvious problem with the model merging algorithm is that 
it tends to give inaccurate values for animals whose size is 
small. 
 We can change the parameters for both the model 
merging and the feature comparison algorithms.  Fig. 4 and 
Fig. 5 shows the results for example runs for which the 
algorithms took into account the size of the model more 
and made greater changes to feature values during 
comparison.  Note that both learned categories are very 
good.  Note also that with feature comparison, we model 
the values for the 3rd and 7th categories better than with 
model merging alone.  Over many iterations of the 
experiment, we find that feature comparison tends to do 
wonders when pef is set to be small (Ρ 0.1).  In that case, 
feature comparison tends to generalize more than model 
merging alone. 

Discussion 
Our Bayesian model merging algorithm applied to 
category-acquisition is not without its faults.  For example, 
we are assuming that in the presence of small sample sizes, 
humans still believe that the distribution of feature values 
in the real world is approximately normal for each distinct 
animal.  More reasonable approached involving the 
Dirichlet density can be found in Anderson (1990).  We are 
also assuming that each feature comparison task occurs 
regularly and that all features of a category are compared.  
In the real world, this is rarely the case.  We might be led 
into comparing, for example, sizes more than cuteness, and 
cats and dogs more often than polar bears and lady bugs.  A 
proper model for comparison tasks in early language 
acquisition would involve modeling the world in which the 
child lives, which is beyond our present scope and 
capabilities.  Note also that we are assuming the 
independence of each feature given the category, which 
cannot be a true model of the world.  Finally, the model 
assumes that model merging and feature comparison 
happens independently.  Note, however, that depending on 
our current comparison task, we might be more or less 
willing to merge disjoint categories.  For example, we may 



be asked to compare cardinals and blue jays.  We don’t 
have much of an idea of what they are and might consider 
them to be close to each other in size.  Might they also not 
be in one category? 
 One other proposal would be to treat the problem as 
minimization of Boolean complexity given features and 
examples.  The best model is that which minimizes the 
minimal formula associated with the disjunctive normal 
form of the evidence written with conjunction among 
features and disjunction among examples.  We haven’t 
worked this out, however. 
 The Bayesian network representation needs to be 
explored thoroughly.  We need to work out the way 
learning of category values will work for a Bayes net.  
Superordinate category representation is another area for 
improvement.  One idea is to use separate nodes for each 
category value (ie. animal name).  Then all we have to do is 
prune the network as more evidence arrives.  The problem 
is that each node would be the parent of the feature values.  
Hence each augmentation of a feature adds O(k) links, 
where k is the number of values a category can take on.  
We should also allow feature values to link with each other, 
thereby removing the feature value independence 
assumption. 
 We presented a Bayesian approach to learning category 
representation.  We saw that learning is facilitated by 
implicit interactions with the real world.  Here, we 
considered feature comparison and priming.  The principle, 
however, is more general.  In modeling domain knowledge, 
we need to consider the various contexts in which a name 
can occur and the various interpretations the name can take 
on with respect to superordinate category prototypes. 
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Appendix 
Matlab code for the algorithm can be found at 
http//inst.eecs.berkeley.edu/~rluo/categ_learn_doc/ 
categ_learn.zip. 
 Run the file learn_animal_categories in Matlab to begin 
experimenting.  You should have the BNT toolkit installed 
http://www.cs.berkeley.edu/~murphyk/Bayes/request.html. 



 

 

 

 

 

 

 

 

 

 

 
             Fig 1.  Size features of categories learned with no merges and no compares. 
 

 

 

 

 

 

 

 

 

 

 

 
             Fig 2.  Size features of categories learned with merges but no compares (expt 1). 

 

 



 
 

 

 

 

 

 

 

 

 

 

             Fig 3.  Size features of categories learned with merges and compares (expt 1). 

 

 

 

 

 

 

 

 

 

 

 

             Fig 4.  Size features of categories learned with merges but no compares (expt 2). 

 

 



 

 

 

 

 

 

 

 

 

 

 
             Fig 5.  Size features of categories learned with merges and compares (expt 2). 
 

 

 

 

 

 

 

 

 

 

 

 
             Fig 6.  High-level algorithm overview. 
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             Fig 7.  A Bayesian network implementation. 
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Abstract 

 Response delay and facilitation in categorical judgment tasks were studied under the 

framework of two potentially competing theories.  The negative priming model and the semantic 

coding model were presented as possible explanations of response interference.  To test the 

models, subjects were asked to either choose the larger or choose the smaller of a pair of 

animals.  Reaction time (RT) differences were found when subjects were required to choose an 

animal in the target trial that was previously ignored in the prime trial.  For example, when 

subjects were asked to perform the same categorical judgment (e.g. choose larger) in both the 

prime and the target trial, mean (target trial RT minus prime trial RT) was found to be 29.9 msec.  

When subjects were asked to respond to the smaller of two small animals that was previously 

ignored, mean RT difference was found to be –152.1.  Results indicate that neither negative 

priming nor semantic coding fully explains the data.  A related effect known as semantic 

congruity, however, was found in the data and provided support for the coding model. 

 

 

 

 

 

 

 

 

 

 



Response Interference in Categorical Judgment Tasks 

 We make binary categorical decisions almost continuously.  Where should I move to?  

LA or San Francisco?  Which day was warmer?  Yesterday or today?  Who is faster?  Dan or 

Dave? Which is more important?  Homework or video game?  Natural questions arise in any 

attempt to understand human decision making processes.  The two most debated research 

questions are: What type of information is represented by an encoding?  And how does the 

processed information affect categorical response?  This paper examines both of these traditional 

questions from a different perspective.  Instead of focusing on “What?” and “How?” we will 

concern ourselves with the question “When?” namely, when do processing and response occur. 

 To describe categorical judgments more rigorously, two models of binary decision-

making are presented and compared under a standard experimental procedure designed to 

measure reaction time.  The first model was first used to explain a phenomenon observed in 

rapid encoding-response experiments.  Tipper (1985) presented his subjects with pictures of two 

distinct objects, one in each color, and asked them to pay attention to only the object in a 

specified color.  In the prime trial, for example, subjects might be presented with a green trumpet 

and a red anchor and might be asked to identify the green object.  In the target trial, the 

previously ignored anchor would now appear in green along with some other arbitrary red object.  

It was found that in the target trial, reaction times (RTs) were significantly slower.  Tipper 

explained this phenomenon by postulating a “negative priming” effect in which previously 

rejected stimuli suppressed subsequent response involving those stimuli.  This model claims that 

information (such as object identity) is processed by mechanisms that inhibit irrelevant details. 

 In contrast with negative priming’s explanation of rapid object-incoherent response tasks 

is a different model that was first used to explain semantic information encoding during 



categorical judgment tasks.  Banks et al. were the first to propose a semantic coding model to 

explain the results of symbolic comparative experiments (e.g. Banks, 1977).  According this 

hypothesis, three types of mental structures are responsible for comparative judgments: database, 

processing codes, and processing mechanisms.  Banks suggested that when a pair of stimuli is 

first presented, the processing mechanisms “generate processing codes from the data base and 

manipulate them until they match the previously stored and coded instructions” (p. 131).  For 

example, suppose that the subject is presented with a table and a car and asked to choose the 

more expensive object.  After this prime trial, the car is coded with E+ for expensiveness and 

table is coded with I+ for inexpensive, since an object can only be expensive or cheap, and not 

both.  In the target trial, the same table is presented along with a box of crayons.  When asked to 

choose the more expensive object, the response will be table, but the reaction time (RT) will be 

longer since the subject must convert the I+ encoding to an E+ encoding.  Note that this is also 

what negative priming predicts: table is rejected in the prime trial, thus inhibiting the response in 

the target trial. 

 Now suppose instead that the subject is presented with the table and a diamond in the 

target trial.  If she is asked to choose the less expensive object, the semantic coding model 

predicts a faster RT (since table is already coded as I+).  Negative priming, however, suggests 

that the response ought to be slow because, again, the previously rejected stimulus (table) 

suppresses subsequent response involving the stimulus.  Here, then, is the trial that distinguishes 

the two models.   

Additional Considerations 

Although each conjecture stated above gives a different prediction of the observed RT 

difference between target and prime trials, we cannot conclude that they contradict one another.  



Negative priming was traditionally used to model rapid, previously inhibited responses in the 

probe trial while semantic coding was used to explain memory mismatch between response and 

question posed.  Studies have shown (Banks, Fujii & Kayra-Stuart, 1976) that in a set of trials 

involving the comparison of magnitudes of a pair of digits, subjects were faster when asked to 

pick the larger of two large digits (e.g. 8 and 9) and slower when asked to pick the smaller of two 

large digits.  Similar effects were observed for smaller digits.  It is possible that long term effects 

of repeatedly coding large digits as large and small digits as small contribute to this 

phenomenon.  To distinguish the delay associated with judgment-instruction mismatch from 

semantic coding effects due to prime trial stimulation, we will refer to the phenomenon described 

above as semantic congruity, as Banks et al. have done. 

Another complication involves the size differences between a pair of stimuli.  Moyer and 

Landuer (1967) found that RTs associated with digit comparison tasks increased as the numerical 

difference between the two digits decreased.  For example, subjects gave quick responses when 

asked to choose the larger of 3 and 8, and slow responses when asked to choose the larger of 6 

and 7.  This phenomenon, which we refer to as the distance effect, needs to be accounted for 

even under situations when semantic congruity is observed. 

Instruction mismatch between prime and target trials can also influence the observed RT.  

We expect that subjects would need additional processing time to encode a new instruction 

during target trial (e.g. Which is smaller?) relative to the old instruction given in the prime trial 

(Which is larger?).  Care must be taken to ensure that instruction mismatch is accounted for by 

appropriate controls.   

We also need to control for the RT decrease or increase due to expectancy.  When 

subjects are presented during the target trial with a stimulus that has already appeared in the 



prime trial, they may respond differently in different situations.  They could, for example, find 

the coincidence bizarre.  In this case, RTs would be longer than normal.  They could also find 

that the processing is easier perform (since they already coded for the stimulus in a previous 

trial).  In this case, RTs would be shorter than normal.  Expectancy is an important contributor to 

observed RTs; another form of control is needed to account for it. 

Recent Developments 

 Confrontation between negative priming and semantic coding was never considered in 

the literature because the former was used to model rapid inhibitory decision-making processes 

and the latter was used to predict RTs for a single trial due to coding mismatch in previous trials.  

Semantic mismatch was generally regarded as the result of discrepancies between the 

representation of the stimulus in the present trial and its representation in short or long term 

memory.  Negative priming, on the other hand, modeled small RT differences in fast responses 

that rely on the speed of mental reflex.  In other words, subjects were forced to analyze even the 

rejected stimulus in a semantic coding task, but were encouraged to pay no attention to the 

rejected stimulus in a negative priming task.  Recall that in Tipper’s original experiments, 

subjects were not required to pay attention to the green object in order to recognize the red 

object. 

 Recently, the interpretation of negative priming given above has been dispelled by 

MacDonald, Joordens, and Seergobin (1999).  In a series of experiments designed to test 

negative priming under conditions where attention to distractors was necessary, MacDonald et al. 

found that negative priming effects were enhanced.  Subjects were asked to discriminate (not just 

recognize) the larger of two animals in both the prime and the probe trial.  Distractors in the 

prime trial became targets in the probe trial.  It was found that probe trial RTs were significantly 



longer than those in traditional negative priming experiments (e.g. Tipper, 1985, using Stroop 

color words).  MacDonald et al. believed that their findings challenged “the basic assumption 

that the negative priming effect arises because the critical item was ignored or not attended to on 

the prime trial” (1999).  We may ask, however, “Are these RT differences due to negative 

priming, or some other effect?”  To qualify their interpretation, the present study examines a task 

in which both negative priming and semantic coding make predictions about outcome RTs.  The 

task even allows us to distinguish between the two models because they give different 

predictions for a specific type of trial. 

 

Method 

Subjects 

 Six students at the Claremont Colleges (Pomona College and Harvey Mudd College, 

Claremont, California) participated in the experiment.  Two of the students generated data for 

qualitative analysis only and did not sit through the entire experiment.  The other subjects each 

performed the experiment three times, the first run being a practice exercise.  All participants 

were sufficiently fluent in English to understand the stimuli displays.  No subject had any 

difficulty seeing the stimulus array. 

Apparatus 

 A Macintosh computer from the Pomona College psychology lab was used to display the 

stimuli and record the RTs of the response.  The Superlab program was used to perform the 

experiment.   

Procedure 

 Before the trials, subjects were given a list of all animal names used in the experiment: 



mouse, dog, horse, elephant, and whale.  They were asked to verify the size order of the animals 

by ranking them in increasing integers of 1 to 5 (1 being the smallest).  This was done to ensure 

familiarity of the subjects with the stimulus array.  During each run, general instructions were 

followed by a total of 66 stimulus displays.  Each successive display was shown right after the 

response to the previous display was received.  Instructions for each pair of stimulus (i.e. choose 

smaller or choose larger) were shown at the center of the top of the screen; two animal names 

were shown at the left and right sides of the screen.  The subjects were asked to press the “z” and 

“m” buttons to select the leftmost and rightmost animal, respectively. 

Four types of trials were presented during each run.  Fig. 1 shows a typical pair of prime 

and probe displays in the first type of trials (reliability trials).  Note that negative priming (NP) 

and semantic coding (SC) give the same prediction in reliability trials.  NP predicts a RT delay in 

the probe trial due to previous inhibition and SC predicts a RT delay in the probe trial due to 

coding mismatch.  The second type of trials (discrimination trials) presented displays similar to 

the ones shown in Fig. 2.  In this case, NP still predicts a RT delay during the probe trial.  SC, 

however, predicts a shorter RT in the probe trial.  As Fig. 2 shows, the distractor in the prime 

trial (horse) is coded S+.  When asked in the probe trial for the smaller of whale and horse, the 

previously S+ encoding of horse ought to facilitate the response.  Note, however, that in nature, 

horse is not generally speaking a small animal.  Thus the semantic congruity effect predicts a 

slower RT just for the probe trial since the subject is asked to choose the smaller of two large 

animals.  This illustrates a peculiarity in the discrimination trials.  As Fig. 3 shows, displays 

involving a match in the instruction-judgment relationship (i.e. semantically congruent trials) 

were also used.  In these pairs of prime and target trials, both semantic coding and semantic 

congruity predict a faster RT during probe response.  From Fig. 3, dog was first coded as S+ in 



the prime trial.  During the probe trial, the previously rejected smaller animal (dog) was asked 

for.  In this case, dog is a small animal, so semantic congruity predicts a fast RT.  Semantic 

congruity was not explicitly considered in the reliability trials.  In that case, however, 

semantically congruent pairs were not systematically distributed.  In calculating mean RT 

differences between prime and probe trials (i.e. mean(probe trial RT − prime trial RT) ), we 

expect the random placement of semantically congruent and incongruent pairs into probe and 

prime trials to cancel out the net semantic congruity effect. 

The remaining two types of trials were part of a network of controls designed to isolate 

the difference in prediction given by NP, SC, and semantic congruity.  Typical displays of 

control trials are shown in Fig. 4.  Notice that prime and target stimuli are all different; no 

linkage between prime and target trials are predicted.  To account for the expectancy effect, a 

new type of control known as associated control was introduced (see Fig. 5).  In the associated 

control trials, the previously accepted animal was again asked for in the probe trial.  If 

expectancy is indeed a factor, we expect RT differences between the responses given in prime 

and probe trials.  We then subtract this difference from reliability and discrimination trial RTs to 

get the net effect of NP or SC. 

To control for the distance effect, only animals similar in size were used in the reliability 

and discrimination trials.  For example, elephant may be compared with horse or dog, but not 

with mouse.  Similarly, whale would be compared with horse or elephant, but not with dog.  The 

distance effect was not explicitly accounted for in the control and associated control trials 

although the placement of long distance vs. short distance pairs was randomized.  If the distance 

effect were important in these trials, they would cancel each other when mean RT differences are 

calculated, since it is equally likely for a mouse-whale pairing to occur in the prime or the probe 



trial.  Note also that each animal (mouse, dog, horse, elephant, and whale) is sufficiently 

distinguishable from each other in terms of size.  There is also no clustering of animals into a 

particular size range.  This ensures that the distance effect is predictable and easy to account for. 

To control for instruction mismatch between prime and target trials, we allowed some 

control and associated control trials to display prime and probe arrays that differed in instructions 

(i.e. Which is larger? vs. Which is smaller?).  The RT delay associated with these trials should be 

subtracted from RT differences found in discrimination trials, because all discrimination trial 

stimuli involved changes in instruction between prime and target displays. 

Serial positioning of the stimuli was controlled by random placement of the animal 

names in the left and right sides of the display.  As a consequence, correct keystroke responses 

for each display was also randomized (i.e. the probability of having the same correct keystroke 

response for both prime and probe trials is 0.5).  Residual encoding was controlled by displaying 

a normative pair of stimuli before each trial.  These normative displays contained animal names 

that matched none of the three animals names found in each reliability, discrimination, and 

associated control trials.  The idea is that normative displays “normalizes” the playing field 

before each trial, so that RT differences can reliably be attributed to the prime and target trial 

responses.  For the control trials, a normative display consisted of the animal ignored in the 

probe trial and another animal that appears in neither the prime nor the probe trials.  Since there 

were only five animal names available, we felt that having an ignored name in the normative 

display would make virtually no difference in the mean RTs. 

Another variable that we attempted to control was the time delay between successive 

displays.  In half of the runs, subjects were given the standard treatment of randomized blocks of 

six reliability trials, six discrimination trials, six control trials, and four associated control trials.  



Each trial consisted of three displays (normative, prime, probe) in sequence.  The order of 

appearance of the trials was randomized.  Subjects were not given any breaks between 

successive stimuli pairs.  In another half of the runs, each trial was preceded by a 2.5 second 

blank display followed by an instruction which asked the subject to press both “m” and “z” keys 

simultaneously to continue.  The effect of these two extra displays was to slow down the 

experiment and eliminate any possible residual encoding left over from the previous trial.  By 

comparing the results found in the fast runs against the slow runs, we can examine the effect of 

time delay between successive trials. 

 

Results 

In this experiment, we are interested in the RT difference (∆RT) given by probe trial RT 

minus prime trial RT.  It this number is positive, a RT delay in the target trial is observed; if this 

number is negative, task facilitation in the target trial is observed.  Table 1 shows the mean ∆RT 

described above for each type of trial, averaged from about 20 to 40 samples each.  Extreme 

outliers are excluded.  Notice that ∆RT for the discrimination trials is greater than the ∆RT for 

the reliability trials.  This, of course, does not take into account instruction mismatch effects, 

expectancy, or semantic congruity.  Note also that the discrimination trials involving 

semantically congruent target responses (discrimination trials 3 and 5) display a large facilitation 

in the probe trial response.  ∆RTs for instruction mismatch trials (control trials 2 and 5, 

associated control trial 1) are also calculated.  Uncertainties for the data are given by standard 

deviation of the mean of the sample.  Fig. 6 shows a box plot of the set of data.  Note the greater 

variability of ∆RTs for semantically congruent discrimination probe trials.  This is due to the 

smaller sample size for these trials, which are a subset of the discrimination trials. 



To find the actual effects on ∆RT due to each type of stimuli, we first subtract the mean 

control trial ∆RT from the mean ∆RTs for reliability, discrimination, associated control, and 

semantically congruent trials (instruction mismatch trials are essentially a subset of the control 

trials).  The reason mean ∆RT for control trials is slightly negative is that subjects felt more 

comfortable with each successive display during any given trial (the effect is most conspicuous 

for the slow runs).  Next, we subtract the mean associated control ∆RT from the result calculated 

as above.  The mean ∆RT for associated control trials is slightly positive (since we had to 

subtract control trial mean ∆RT from it to get the net effect) indicating a RT delay due to 

expectancy.  Finally, we subtract the mean instruction mismatch ∆RT from the resulting mean 

∆RTs of discrimination and semantically congruent trials found above (we do not subtract from 

the reliability trials because for these trials, all instructions were congruent for prime and probe 

displays).  Doing all the calculations we just mentioned, we obtain the net ∆RT due to specific 

types of trial stimuli.  These results are given in Table 2 and illustrated graphically in Fig. 7. 

In Table 2, the error given for each mean ∆RT is found by propagating from the errors in Table1. 

From Fig. 7, we observe that negative priming cannot explain the semantic congruity 

effect.  For example, given two small animals, subjects will choose the smaller of the two 

quickly despite what occurs in a previous trial.  Negative priming does not explain ∆RT for 

discrimination trials particularly well since the mean ∆RT is nearly zero, indicating neither 

inhibition nor facilitation.  Semantic coding does not explain the discrimination trial ∆RT very 

well either since the expected facilitation does not occur.  In any case, both theories support the 

findings in the reliability trials since mean RTs are increased in the probe trial as expected.  The 

most statistically significant piece of information in Table 2 is the large target facilitation found 

in discrimination trials where targets and instructions are semantically congruent (e.g. Fig. 3).  



This indicates that even in a fast experimental task, previous semantic encoding is extremely 

important.  Every time we see the words elephant or whale, for example, we automatically 

retrieve out of our memory the concept of large size.  It appears that semantic congruity is a part 

of every judgment the subject makes.  The influence of development and previous coding seems 

strong even for a rapid judgment task. 

Fast vs. Slow Runs 

 Further analysis of the experimental data reveals some surprising results.  When we 

separate the mean ∆RTs for slow and fast runs of the experiment, we find that, contrary to 

expectations, reliability trial mean ∆RT decreases and discrimination trial mean ∆RT increases.  

Semantically congruent discrimination trial mean ∆RT stays about the same.  Negative priming 

can now better explain the discrimination data and semantic coding falls apart for the same data.  

Both results, however, are extremely variable.  Many of the effects observed may simply be due 

to random chance.  We therefore concluded that to alter ∆RTs significantly, greater change of 

speed is necessary for this particular task. 

 

Discussion 

 According to MacDonald et al. negative priming effects are increased for tasks where 

attention to distractors is required.  In this experiment, we have challenged the assumption that 

the RT increases observed for these tasks are actually due to negative priming.  Negative priming 

predicts that previously ignored stimuli are inhibited in the probe trial.  We found, however, that 

in tasks such as those given by Fig. 3, response to ignored stimulus is actually significantly 

enhanced in the probe trial.  If negative priming is to explain the wider scope associated with 

semantic interference tasks, it must append to its simple theoretical framework an account of 



phenomena such as the semantic congruity effect. 

 According to Banks et al. semantic coding is responsible for the cross-trial interference 

found in a categorical judgment task.  While this experiment does not contradict the semantic 

coding hypothesis for successive trials, it does offer some insight into possible improvements of 

the theory.  It is noted that long-term coding effects are more important than immediate encoding 

of information.  In fact, between-trials encoding seems to neither facilitate nor delay probe trial 

RTs.  This experiment supports the claim, however, that information in a categorical judgment 

task is indeed coded by categorical variables such as L+ and S+. 

Implications 

 Looking again at the data from Table 2, we must conclude that semantic coding or 

learning takes place slowly.  In a rapid decision-making task, information is retrieved from 

memory, and not necessarily encoded from previous trials.  Hence the effect of semantic 

congruity is significant but the effect of semantic coding is not.  We can understand the data by 

postulating an automatic mechanism for semantic processing.  Every time we see the word whale 

or elephant, L+ encoding is retrieved from memory, and not directly encoded.  The next time we 

see whale or elephant, L+ is retrieved again.  This experiment supports the idea that the mind 

does not keep a handful of information at its fingertips, even in a rapid binary decision task.  If it 

did, we would see large semantic coding effects or perhaps even negative priming.  Instead, the 

mind asks for the encoding again and again, comparing it each time to relevant information and 

discarding the result as time passes.  This new model of code processing is given in Fig. 8. 

Under this model of memory processing, we would explain a typical trial as follows.  

First the subject is told about the category of discrimination, in this case, size.  This shifts the 

memory system into a binary coding mode involving two categories: L+ and S+.  A whale and a 



horse are presented, with instructions asking for the larger animal.  As soon as the word whale is 

read, the binary coding machine (mind) automatically processes whale as L+.  Similarly horse is 

processed as L+.  Now the machine must distinguish between the larger of two L+s.  This is 

where the bulk of the processing time is distributed.  After generating a response, most of the 

encoded information is thrown out since a new pair of stimuli now appears.  The process 

continues until the end of the experiment.  How, then, does the mind learn (and remember certain 

codes) ?  It learns by focusing attention to the task.  It must process and encode a specific piece 

of information continuously.  For example, if it must learn that a “quoma” is “large,” then it must 

associate quoma with the L+ binary encoding.  If the association between quoma and large is 

weak, RT for the next target trial quoma will be long.  For familiar objects, however, the 

machine already has encoded information available; it need not encode additional information. 

Qualification 

 We have been concentrating on the large drop in target RT associated with semantically 

congruent discrimination trials.  One important qualification must be put in place.  When we 

examine the 5th discrimination trials, we note that not only is the probe display semantically 

congruent, but that the prime display is semantically congruent as well (see Fig. 3).  (This does 

not occur in the other semantically congruent discrimination trial.)  Yet we observe an extremely 

negative ∆RT for these trials?  If semantic congruity is the sole factor in determining RTs, then 

trial 5 ∆RTs should be zero.  This suggests that there is a complex interaction between semantic 

coding and semantic congruity.  It appears that long term and short term processing can influence 

each other in complicated ways.  If neither semantic coding nor semantic congruity can fully 

explain the data, then we need a new theory that models the interactions between long term and 

short term semantic coding.  The solution to this problem may lie in the analogous interactions 



between automatic and controlled processing. 
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of Trial Mean RT 
Difference 

Error in Mean RT 
Difference 

Reliability 23.3 41 
Discrimination 58 47 
Control -37.8 37 
Associated Control -6.6 39 
Semantically 
Congruent 

-95.2 90 

Instruction Mismatch 63.5 46 
 
Table 1: Mean of probe trial RT minus prime trial RT for each type of trial.  Note that semantically 
congruent trials are a subset of discrimination trials and that instruction mismatch trials are a subset 
of control and associated control trials. 

Type of Trial Net Mean RT 
Difference 

Error in Net Mean RT 
Difference 

Reliability 29.9 77 
Discrimination 1.1 92 
Semantically 
Congruent 

-152.1 120 

 
Table 2: Net mean RT differences calculated by taking into account appropriate controls, 
expectancy and instruction mismatch.  This gives the net effect of varying each probe trial variable.  
Note that only semantically congruent trial data is significant with respect to the errors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Prime Trial:                                                      Probe Trial: 
 
 
 
 
                    Which is larger?                                                 Which is larger? 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Typical displays in prime and probe trials in a reliability trial.  Predictions of each model: 
Negative priming: elephant ignored in prime, response to elephant slow in probe. 
Semantic coding: elephant coded as S+ in prime, response to elephant slow in probe since we ask    
                             for the larger animal. 

 
Prime Trial:                                                      Probe Trial: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Typical displays in prime and probe trials in a discrimination trial.  Predictions are: 
Negative priming: horse ignored in prime, response to horse slow in probe. 
Semantic coding: horse coded as S+ in prime, response to horse fast in probe since we ask for the 
  smaller animal. 

 
 
              Which is larger? 

 
 
             Which is smaller? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Prime Trial:                                                      Probe Trial: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Typical displays in prime and probe trials in a semantically congruent discrimination 
trial.   
Negative priming: dog ignored in prime, response to dog slow in probe. 
Semantic coding: : dog coded as S+ in prime, response to dog fast in probe since we ask for the 
    smaller animal.  (Due to semantic congruity, response should be very fast.) 
 

 
Prime Trial:                                                      Probe Trial: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Typical displays in prime and probe trials in a control trial.  Predictions for each model: 
Negative priming: elephant ignored in prime, no effect on response to horse in probe. 
Semantic coding: elephant coded as L+ in prime, no effect on response to horse in probe. 
   (Control is used to compute net effect of trial stimuli arrangements.) 

 
 
             Which is larger? 

 
 
             Which is smaller? 

 
 
             Which is smaller? 

 
 
             Which is smaller? 
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Figure 6: Box plots of the result in Table 1.  Note the outliers represented as stars. 

 
Prime Trial:                                                      Probe Trial: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Typical displays in prime and probe trials in an associated control trial.  Predictions are: 
Negative priming: elephant ignored in prime, no effect on response to horse in probe. 
Semantic coding: horse coded as S+ in prime, response to horse slow in probe since we ask for the 
  larger animal. 
 

 
 
            Which is smaller? 

 
 
              Which is larger? 
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Figure 7: Graphical display of net mean RT differences found in Table 2.  Error bars omitted.  
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Figure 8: Revised model of semantic information processing using the memory retrieval machine. 
Here, the memory machine has been primed as a binary (large/small) processor.  The processing is 
semantically congruent in this case. 
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