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The process of categorical learning and an

effort to model it in machines is explored in
this article yul current research into artificial in-

telligence.  Specifically, the results of using semantic priming

in a Bayesian Framework is analyzed and discussed.







is given in Schooler et. al. Most objec-
tions to Bayesian models point to the
lack of plausibility for the human mind
to perform probabilistic computations
during experimental tasks. As such,
this experiment will make simplifying
assumptions on the REM model by us-
ing simpler Bayesian methods that are
assumed to be within reach of the neu-
ral computation.

The experiment focused on animal
categories so as to simplify direct com-
parison with psychological experi-
ments. Ideas suggested here are
relevant for text categorization as well.
In particular, any domain that can be
decomposed into hierarchical catego-
ries can be modeled. The algorithm
uses a simple representation of features
and categories to facilitate comparison.
In a real-world application, Bayesian
network representations should be con-
structed for both basic and parent cat-
egories. A suggestion on how this can
be done is presented later, although the
implementation is only at an experi-
mental phase.

Assumptions

First, it is assumed that no percep-
tual errors are made during learning
and testing. There is no probability dis-
tribution associated with input animal
features for each example. The lack of
errors in perception does not, however,
imply that the input data is noiseless.
It is assumed that the distributions of
attributes of an animal are independent
and jointly Gaussian. Data are gener-
ated using normal distributions with
pre-determined means and variances
that reflect the attribute domain for each
animal. Noisy examples with random
features are also fed into the model pe-
riodically. The assumption suggests
that the model captures the only proba-
bilistic aspect of category learning.
Thus, the model itself (not the percep-
tual system) is responsible for handling
noisy data.

Second, only two levels of categories
are relevant to the task. The basic cat-

egories consist of ani-
mal types. In particu-
lar, data for ant, snail,
frog, cat, wolf, cow,
and whale were given
as input. The model
forms abstract models
of the data, so no actual
label is given to any
category. The idea is
that a category is de-
scribed by average fea-
ture values and a
measure of the spread
of feature values. Itis
the model’s task to
minimize the complex-
ity of sets of categories
while maximizing the
probability of correctly
identifying the cat-
egory of any example
given the feature val-
ues. This can be done
using inference on a
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belief network. The

parent categories con-

sist of graded conceptual categories in-
volving the animal types. For example,
the large animal category should include
whale and cow as salient examples, with
wolf possibly having graded membership.
Graded membership is not represented ex-
plicitly, however. The model will keep
track of one best prototype, which can be
updated with a given probability during
comparison tasks, Conceptual categories
are constructed using the different fea-
tures associated with animals. In particu-
lar, large, small, cute, hideous, ferocious,
and tame animal were used. Ideally, other
objects could be modeled as well, allowing
the conceptual categories to be simply
large, small, cute, hideous, etc. This makes
the model more general, less domain-de-
pendent, but harder to assess.

Third, inferences and comparisons
done on particular members of basic cat-
egories are necessary for learning and
structuring both basic and parent catego-
ries. Here the focus is on feature value
comparisons. A question that can be
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asked is, for example, “which animal is
larger, cat or frog?” Luo [4] reviews these
tasks. In modeling early development,
the semantic priming that results from
querying the subject is associated with
changes in the underlying categories.
The claim is that these changes result
from comparison of basic category fea-
ture values with prototype feature val-
ues. In the example above, size feature
values for cat and frog are compared
with the prototype large animal feature
value. Changes are made to the abstract
categorical representations of cat and
frog size values and spreads. Prototype
values are updated as needed. One natu-
ral question that arises is: if feature value
estimates are already kept by our basic
category representation, could not one
just compare the estimates and return the
appropriate category (in this case, cat for
the larger animal)? There are three prob-
lems with this approach. First, the ap-
proach predicts that all comparisons
should take the same amount of time on
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finite, sufficiently “nice” set of training
examples, the category partitions formed
by the algorithm will converge in prob-
ability to a set of non-overlapping cat-
egory distributions (in the sense of zero
variance feature values) as the number
of sweeps goes to infinity. This state-
ment would then imply that each cat-
egory would eventually be labeled by its
own word. For now, it is assumed that
most likely labels are found magically
by some other mechanism. Itis not nec-
essary to worry about possible ambigu-
ity here because the comparison
simulations are done with abstract cat-
egories and the prototypes generalize
over the entire domain independently of
particular word labels. Note, however,
that a prototype is a single instance from
the basic categories. When humans are
confronted with a question regarding
size they don’t automatically think of a
whale. The assumption here is that hu-
mans perform subconscious compari-
sons with a vague superordinate
prototype whose variance is averaged
over a few salient examples.

Lastly, it is assumed that this direct
representation of human semantic pro-
cessing can be efficiently implemented
neurally. One approach is to translate
the mean-variance representation into a
simple Bayesian network. This will be
described after the model and the algo-

Leit: High-level overview of the algorithm. Right: A Bayesian
network implementation.

Sl

rithm.
Model

The basic claim of the model is that
the meaning of a noun in some restricted
domain is its abstract representation in
relation to all other nouns in the do-
main[1]. Moreover, this relationship is
captured by comparisons with sets of
superordinate prototypes that capture
general characteristics of objects referred
to by basic terms.

The model acquires basic category
representations by merging abstract
models of category partitions and by
performing inferences and comparisons
using these abstract partitions. It is as-
sumed that implicit reinforcements for
correct and incorrect responses have
been provided internally. This model
controlled experimental paradigms in
which the subject is given a pair of ob-
jects whose feature values fall on some
subjective scale. Errors are frequently
caused by priming and going too fast.
Moreover, learning probability distribu-
tions for category labels is assumed to
be incremental, so it is not necessary to
tell the subject not to say something, be-
cause it will not be said as predicted.

Thus, the model has abstract catego-
ries that model the internal representa-
tions of nouns and learning mechanisms
that takes knowledge from the real
world, and reconstructs, as best as they
can, the entities that the nouns represent,

using comparison-based implicit
learning [5]. Note that for

here, this consists only of two hierarchi-
cal levels. Extensions beyond animal
types can be constructed by treating each
superordinate category as also a basic

category.
Algorithm

Both model merging and prototype
formation depend on order of data pre-
sentation. Since any possible merge with
lower cost will be performed, there is a
chance that the optimal merge will not
be performed. Similarly, since early ex-
perience is weighted more heavily in
prototype formation, it is possible to get
unrepresentative prototypes fairly late
into the learning process.

Prototype acquisition is modeled as
“Markov.” That is, the mean feature
value for a prototype is drawn from ei-
ther the current value or the maximum
(or minimum) value over subordinate
categories. As the model accumulates
experience, it tends to stay with the cur-
rent value; initially, it tends to choose
the optimal value. The idea is that a
single basic category instance serves as
the prototype, but that the variance as-
sociated with the prototype is estimated
from the current variance and the differ-
ence between the optimal value and the
current value. Hence, the model forgets
the past because the current prototype
value variance captures all that is
needed to know about past prototype
values. The reason for this design deci-
sion is the seemingly transient nature of
a prototype. When people think of a cat,
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type on either the last prototype or the
best possible prototype. The probability
of choosing between the two depends on
experience. Asmore and more examples
are observed, it becomes less likely to
switch to the best possible prototype,
because the current prototype must al-
ready be pretty good.

Here is a walkthrough of the algo-
rithm in detail. First, random examples
are created consisting of size, cuteness,
and ferocity values for our animal types
(ant, snail, frog, cat, wolf, cow, and
whale), with noisy examples given ran-
dom features values. Next, the data is
given to the model incrementally. The
model first scans through the categories
to see if the new example can be put into
an existing category. If not, a new cat-
egory is constructed. After a few data
incorporation steps, the merging algo-
rithmis invoked. The cost of every pair
of possible merges is computed and the
best merge to perform is chosen. The first
merge is performed with a higher prob-
ability (lower cost) than the probability

category feature values. Theidea is that
for a set of data, a smaller model is a bet-
ter, more succinct description of an un-
derlying representation. Therefore, it is
desirable to minimize the size of the par-
tition by merging categories together.
But merging requires the re-computation
of the variance of feature values for the
resulting category, which can increase
because the two categories to be merged
are distinct. This should be kept low if
good predictions are to be made about
which category a novel set of feature val-
ues belongs to. Thus there is a trade-off
between compactness and representa-
tional power. The algorithm will keep
finding and merging categories until a
merge with a lower cost cannot be found.

Between data incorporation steps, the
query mechanism is periodically in-
voked, which models implicit compari-
sons that facilitate category learning.
The prototypes are first updated
probabilistically by taking on the param-
eters modeling the experience of a child.
A past experience factor (pef) between 0

egories that correspond to the querying
examples are found. These categories
are compared with the prototype catego-
ries for each feature. The categories are
explicitly changed by a small amount
that is related to pef. The larger category
is moved toward the value of the larger
prototype, the smaller category toward
the value of the smaller prototype, and
similarly for cuteness and ferocity. The
idea is that given a pair of examples, the
model is asked to choose, for example,
which animal is larger. The target ex-
ample is coded as being large and the
rejected example as being small. This
primes future judgments on both of the
examples [4]. Specifically, the internal
representation of the target and rejected
examples are changed by some small
factor determined by experience and by
the distance between feature values of
examples and prototypes. Note that the
prototype representation can also be
changed if the target example feature
value is “more optimal” than the proto-
type feature value. This can happen be-

o g i Mo ot
0 ] i i
“ i 1 —
8
E"" g_. E‘ JLL
3 M LF]
=] S 5
i i i
20 i = E W ) 0 T W =0 ] ] E [ ] W o IR [ ] £ W £ Wi 7 0
Namter of Swanpr arber o Swezpt Nawiar ol Swvngn
0 = 1n 8
L
Ll
L __M § . . . $ - * *
B 4
# caniiad i . e I .
s 0] e 3! E9
il i i
Es s i
[0 ™ ] i ] [3 7 [ ® W W g W P O O
Lawed Loy Ll Linrnee (vingory Lubad Lezand [vegory Label
8 ' 8
» = o
[ B ] s ] o
» =
L] x 4 i x
3 % % i 3 x *
i’ * i’ i x
a0 T 3 i ¥ i 7 AN ] i 5 i T g At 3 ] i g i 7 ]
Fesmple Crugory Lot Frsmpl Crugery Libel Eunmpls Eragery|

(cost) of the original model. The basic
idea is to try and maximize

P(Model | Data) which is equivalent
to P(Data| Model) - P(Model) / P(Data).

Here P(Data) can be ignored since it is
the same for any merge. This equation
is then translated to:

cost(Model) being equal to

o - size (Model) + (1 — o) - var(Model),
where size(Medel) is the total number of
categories (i.e. the size of the partition),
and var(Model) is the total variance of all
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and 1 is defined that is initially small,
but becomes larger as the number of
sweeps increases. With probability 1
minus pef, the superordinate prototypes
are replaced (large animal, small animal,
cute animal, hideous animal, ferocious
animal, tame animal) with the example
with the optimal feature value in the cat-
egory partition. Since pef increases with
time, the model is less likely to change
prototypes as it obtains more and more
experience. Next, the best matching cat-

cause the prototypes are only updated
probabilistically so the prototypes may
not be the best.

It is possible to translate the model to
a Bayesian network. As suggested by
Koller & Sahami [3], the categories can
be represented as discrete nodes that
serve as parents of Gaussian feature
nodes. Thus the statistics for each fea-
ture are specified and query the category
node given the feature evidence. The
problem is to implement an unsuper-
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vised learning algorithm that updates
the values that the category node can
take on as more evidence arrives. Here,
independence of each feature value is as-
sumed. The superordinate category
node “large” is a binary representation
of a “decision” based on current feature
estimates. Note that prototype values are
keptimplicitly within the distribution for
the superordinate node. It may be better
to use decision nodes for the
superordinate category nodes, but
whether inference would work is still in
question,

Results

In general, category partitions learned
using feature comparisons tend to gen-
eralize a bit more, so that a smaller num-
ber of categories results. Note that one
obvious problem with the model merg-
ing algorithm is that it tends to give in-
accurate values for animals whose size
is small.

Itis possible to change the parameters
of both the model merging and the fea-

assumed that in the presence of small
sample sizes, humans still believe that
the distribution of feature values in the
real world is approximately normal for
each distinct animal. More reasonable
approaches involving the Dirichlet den-
sity can be found in Anderson [1]. Itis
also assumed that each feature compari-
son task occurs regularly and that all
features of a category are compared. In
the real world, this is rarely the case. A
person might be led into comparing, for
example, sizes more than cuteness, and
cats and dogs more often than polar
bears and lady bugs. A proper model
for comparison tasks in early language
acquisition would involve modeling the
world in which the child lives, which is
beyond present scope and capabilities.
Note also that the independence of each
feature given the category is assumed,
which cannot be a true model of the
world. Finally, the model assumes that
model merging and feature comparison
happen independently. Note, however,
that depending on the current compari-
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ture comparison algorithms. Over many
iterations of the experiment, itis discov-
ered that feature comparison tends to do
wonders when pef is set to be small (R
0.1). In that case, feature comparison
tends to generalize more than model
merging alone.

Discussion

This Bayesian model-merging algo-
rithm applied to category-acquisition is
not without its faults. For example, it is

son task, it might be more or less suit-
able to merge disjoint categories. For ex-
ample, consider the comparison of
cardinals and blue jays. The model does
not have much of an idea of what they
are and might consider them to be close
to each other in size. Are they also in
one category?

One other proposal would be to treat
the problem as minimization of Boolean
complexity given features and examples.
The best model is that which minimizes
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the minimal formula associated with the
disjunctive normal form of the evidence
written in conjunction with features and
disjunction among examples. This has
not been worked out yet.

The Bayesian network representa-
tion still needs to be explored thor-
oughly. A way in which learning of
category values will work for a Bayes
net still needs to be worked out.
Superordinate category representation
can also be improved. One idea is to
use separate nodes for each category
value (ie. animal name). Then all the
model has to do is prune the network
as more evidence arrives. The prob-
lem is that each node would be the par-
ent of the feature values. Hence each
augmentation of a feature adds O(k)
links, where k is the number of values
a category can take on. The model
should also allow feature values to link
with each other, thereby removing the
feature value independence assump-
tion.

This model has presented a Bayesian
approach to learning category represen-
tation. It can be seen that learning is
[facilitated by implicit interactions with
the real world. Here, the focus is on fea-
ture comparison and priming. The prin-

iple, however, is more general. In
|m0deling domain knowledge, the vari-
lous contexts in which a name can occur
land the various interpretations the name
lcan take on with respect to
|superordinate category prototypes need
Jto be considered.
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Abstract

A probabilistic algorithm for unsupervised learning of
categories using internal comparisons is presented. The
Bayesian merging algorithm uses parent category prototypes
to facilitate basic category comparisons. Our model takes
on the new task of learning internal representation with no
explicit feedback. We assume that humans make implicit
comparisons between novel categories and merge categories
they consider similar, in a probabilistic sense. We find that
the algorithm out performs simple data incorporation, and
that the algorithm supplemented by feature comparisons did
even better. The consideration of context brought about by
feature comparison allows the model to generalize over
noisy examples. However, a more compact representation is
desired.

Introduction

Humans can learn nouns easily given a few examples and
almost no explicit feedback. A simple explicit memory
model can account for neither the rapidity nor the accuracy
of learning. Thus we must rely on a model of implicit
memory that accounts for the effects of past experience.
One approach is to represent nouns as basic categories with
uncertain feature values. As more data are incorporated,
the categories look more and more like what the noun
represents in the real world. Since categories are built up
from experience, we expect physical interaction to improve
category acquisition. We suggest that implicit category
comparisons (via semantic priming) model this physical
interaction.

Much of the modeling ideas presented are inspired by
Schooler et. al. (2001). As in Schooler et. al., we apply
rational analysis (Anderson, 1990) to the modeling of
results from psychological experiments. The REM model
of Schooler et. al. was an attempt to account for episodic
retrieval via a model that assumes that priming acts to
“alter the word’s lexical-semantic memory representation”
(2001). Justification for direct alteration of the
representation are given in Schooler et. al. Our priming
effects will be based on comparison tasks. Most objections
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to Bayesian models point to the lack of plausibility for the
human mind to perform probabilistic computations during
experimental tasks. Our model will make simplifying
assumptions on the REM model by using simpler Bayesian
methods that we assume are at least can be computed
neurally. Moreover, we will apply Bayesian reasoning to
learning a best current model. We will simplify the
algorithm by making some assumptions on human
perceptual capabilities and mental representations.

We focused on animal categories so as to simplify direct
comparison with psychological experiments. Ideas
suggested here are relevant for text categorization as well.
In particular, any domain that can be decomposed into
hierarchical categories can be modeled. Our algorithm
uses a simple representation of features and categories to
facilitate comparison. In a real-world application,
Bayesian network representations should be constructed for
both basic and parent categories. We’ll suggest how this
can be done later, although the implementation is only at an
experimental phase.

Assumptions

First, we assume that no perceptual errors are made during
learning and testing. That is, there is no probability
distribution associated with input animal features for each
example. The lack of errors in perception does not,
however, imply that the input data is noiseless. We assume
that the distributions of attributes of an animal are
independent and jointly Gaussian. Data are generated
using normal distributions with pre-determined means and
variances that reflect the attribute domain for each animal.
Noisy examples with random features are also fed into the
model periodically. The assumption suggests that the only
probabilistic aspect of category-learning is captured by our
model. Thus, our model (and not the perceptual system) is
responsible for handling noisy data.

Second, only two levels of categories are relevant to our
task. Our basic categories consist of animal types. In
particular, data for ant, snail, frog, cat, wolf, cow, and
whale were given as input. Note, however, that the model
forms abstract models of the data, so no actual label is



given to any category. The idea is that a category is
described by average feature values and a measure of the
spread of feature values. It is the model’s task to minimize
the complexity of sets of categories while maximizing the
probability of correctly identifying the category of any
example given the feature values. This can be done using
inference on a belief network. Our superordinate parent
categories consist of graded conceptual categories
involving the animal types. For example, the large animal
category should include whale and cow as salient
examples, with wolf, and possibly cat having graded
membership.  Graded membership is not represented
explicitly, however. The model will keep track of one best
prototype, which can be updated with a given probability
during comparison tasks.  We construct conceptual
categories using the different features associated with
animals. In particular, large animal, small animal, cute
animal, hideous animal, ferocious animal, and tame animal
were used. Ideally, we should model other objects as well
and allow our conceptual categories to be simply large,
small, cute, hideous, etc. This makes the model more
general, less domain-dependent, but harder to assess. Thus
we stick to animals at present.

Third, inferences and comparisons done on particular
members of basic categories are necessary for learning and
structuring both basic and superordinate parent categories.
Here we focus on feature value comparisons. We can ask,
for example, “which animal is larger, cat or frog?” Luo
(2000) reviews these tasks. In modeling early
development, we can associate the semantic priming that
results from querying the subject with changes in the
underlying categories. Our claim is that these changes
result from comparison of basic category feature values
with prototype feature values. In the example above, size
feature values for cat and frog are compared with the
prototype large animal feature value. Changes are made to
the abstract categorical representations of cat and frog size
values and spreads. Prototype values are updated as
needed. One natural question that arises is: if feature value
estimates are already kept by our basic category
representation, couldn’t we just compare the estimates and
return the appropriate category (in this case, cat for the
larger animal)?  There are three problems with this
approach. First, the approach predicts that all comparisons
should take the same amount of time on average. This has
been shown to be false (Banks et. al., 1976). For example,
it is much faster to decide between whale and ant than cat
and frog. Second, the approach predicts that no errors
could occur. For example, frogs would always be judged
smaller than cats. This does not hold experimentally (Luo,
2000). We need, instead, a model that is generally true, but
can give wrong answers in some contexts. Third, there are
uncertainties associated with feature estimates (This is why
we need a measure of spread). For example, some cats
(tigers) are very large while other cats (kitty) are very
small. As more examples of cats are shown to the system,
the model becomes better and better at estimating the
relative size of cats, but it is never absolutely sure that cats

are smaller than wolves. Our approach is to compare cat
and wolf sizes with the prototypical size. We can model
differences in judgment reaction times by relative distances
between category and prototype size feature values. You
can think of our approach as a variance reduction
technique. We are leveraging our knowledge about
prototypical cases, which also have associated uncertainty
values.

Fourth, there exist abstract category representations in
the mind independent of, but influenced by, linguistic
labels. Our model keeps abstract categories with no
particular linguistic interpretation. The reason for this is
that synonyms abound in the real world. While there is
evidence that no “exact” synonyms exist in the technical
sense, our model of the mind relies on generalization over
similar word senses. Hence, frog and toad may refer to
relatively similar animals that have similar values with
respect to our set of features. A child may not be able to
distinguish (at least at first) between these similar animal
types. Thus we need a structure that represents the features
of a frog-toad without labeling it. We can then compare
these abstract categories amongst themselves and perform
inferences purely on the basis of feature structures. Words
with different senses (cat, for example) are described by
different categories while different words denoting animals
with similar features (frog and toad, for example) are
described by the same category. We hope to show in the
future that the linguistic label associated with an abstract
category is a probability distribution over words or phrases
acquired from experience. Instead of saying, for example,
that the word cat has two senses (kitty and tiger), we say
that abstract category A has a probability of 0.95 of being
labeled “cat” and abstract category B has a probability of
0.5 of being labeled “cat.” With experience, the abstract
categories become finer because the variances of the
feature values become smaller. In the limit of infinite
experience, the two word senses of “cat” will be described
by separate abstract categories with labeling probability
1.0, because a separate abstract category will describe
“tiger” with probability 1.0. We hope that someone will
prove the following claim (it shouldn’t be hard): Given a
pre-defined, finite, sufficiently “nice” set of training
examples, the category partitions formed by the algorithm
will converge in probability to a set of non-overlapping
category distributions (in the sense of zero variance feature
values) as the number of sweeps goes to infinity. This
statement would then imply that each category would
eventually be labeled by its own word. In this paper, we
assume that most likely labels are found magically by some
other mechanism. We don’t really have to worry about
possible ambiguity here because our comparison
simulations are done with abstract categories and our
prototypes generalize over the entire domain independently
of particular word labels. Note, however, that a prototype
is a single instance from our basic categories. When
humans are confronted with a question regarding size,
however, they don’t automatically think of, say, a whale.
Our assumption here is that they performs subconscious



comparisons with a vague superordinate prototype whose
variance is averaged over a few salient examples.

Lastly, we assume that our direct representation of
human semantic processing can be efficiently implemented
neurally. One approach is to translate our mean-variance
representation into a simple Bayesian network. We’ll
describe this after giving the model and the algorithm.

Model

The basic claim of the model is that the meaning of a noun
in some restricted domain is its abstract representation in
relation to all other nouns in the domain. (This, of course,
is nothing new; see, for example, (Anderson, 1990).)
Moreover, this relationship is captured by comparisons
with sets of superordinate prototypes that capture general
characteristics of objects referred to by basic terms.

The model acquires basic category representations by
merging abstract models of category partitions and by
performing inferences and comparisons using these abstract
partitions. Implicit reinforcements for correct and incorrect
responses are assumed to be provided internally. (This
models controlled experimental paradigms in which the
subject is given a pair of objects whose feature values fall
on some subjective scale. Errors are frequently caused by
priming and by going too fast) Moreover, learning
probability distributions for category labels is assumed to
be incremental, so that we don’t need to tell the subject not
to say something, because she won’t say it (as the model
predicts).

Thus we have abstract categories that model the internal
representations of nouns and learning mechanisms that
takes knowledge from the real world, and reconstructs, as
best as they can, the entities that the nouns represent, using
comparison-based implicit learning (Schooler et. al., 2001).
Note that for our domain, this consists only of two
hierarchical levels. Extensions beyond animal types can be
constructed by treating each superordinate category as also
a basic category.

Algorithm

Both model merging and prototype formation depend on
order of data presentation. Since any possible merge with
lower cost will be performed, there is a chance that the
optimal merge will not be performed. Similarly, since
early experience is weighted more heavily in prototype
formation, we may get unrepresentative prototypes fairly
late into the learning process.

We chose to model prototype acquisition as “Markov.”
That is, the mean feature value for a prototype is drawn
from either the current value or the maximum (or
minimum) value over subordinate categories. As the model
accumulates experience, it tends to stay with the current
value; initially, it tends to choose the optimal value. The
idea is that a single basic category instance serves as the
prototype, but that the variance associated with the

prototype is estimated from the current variance and the
difference between the optimal value and the current value.
Hence, the model forgets the past in the sense that the
current prototype value variance captures all we need to
know about past prototype values. The reason for this
design decision is the seemingly transient nature of a
prototype. When we think of a cat, we are basing our
estimates on prior knowledge about distributions of feature
values of a cat. When we think of a large animal, however,
we first think of the idea of large. Then we may think of
some specific animal prototypical of large animals. We
don’t know everything about this prototype animal but we
do know that it is large. After using this information, the
prototype is put away. Our claim is that we don’t know all
the feature value distributions of any prototype of any
superordinate category.  Given this assumption, one
sensible model would be to base our prototype on either the
last prototype or the best possible prototype. The
probability of choosing between the two depends on
experience. As more and more examples are observed, we
are less likely to switch to the best possible prototype,
because the current prototype must already be pretty good.

Now, we will walk through the algorithm in detail. An
overview is presented in Fig. 6. First, we create random
examples consisting of size, cuteness, and ferocity values
for our animal types (ant, snail, frog, cat, wolf, cow, and
whale), with noisy examples given random features values.
Next, we give the data to the model incrementally. The
model first scans through the categories to see if the new
example can be put into an existing category. If not, a new
category is constructed. After a few data incorporation
steps, the merging algorithm is invoked. We compute the
cost of every pair of possible merges and choosing the best
merge to perform. For our purposes, we perform the first
merge with a higher probability (lower cost) than the
probability (cost) of the original model. The basic idea is
that we are trying to maximize

P(Model | Data) = P(Data | Model) - P(Model) / P(Data).

P(Data) can be ignored since it is the same for any merge.
This equation is translated to:

cost(Model) = « - size(Model) + (1 - @) - var(Model),

where size(Model) is the total number of categories (i.e. the
size of the partition), and var(Model) is the total variance
of all category feature values. The idea is that a set of data,
a smaller model is a better, more succinct description of an
underlying representation. Therefore, we want to minimize
the size of the partition by merging categories together.
But merging requires us to recomputed the variance of
feature values for the resulting category, which can
increase because the two categories to be merged are
distinct. We should keep the variability low if we are to
make good predictions about which category a novel set of
feature values belongs to. Thus we have a trade-off
between compactness and representational power. The



algorithm will keep finding and merging categories until a
merge with a lower cost cannot be found.

Between data incorporation steps, we periodically
invoke the query mechanism, which models implicit
comparisons that facilitates category-learning. We first
update the prototypes probabilistically by parameterizing
the experience of a child. We define a past experience
factor (pef) between 0 and 1 that is initially small, but
becomes larger as the number of sweeps increases. With
probability 1 minus pef, we replace our superordinate
prototypes (large animal, small animal, cute animal,
hideous animal, ferocious animal, tame animal) with the
example with the optimal feature value in our category
partition. Since pef increases with time, we are less likely
to change our prototypes as we obtain more and more
experience. Next, we find the best matching categories that
correspond to the querying examples. We compare these
categories with the prototype categories for each feature.
We explicitly change our categories by a small amount that
is related to pef. The larger category is moved toward the
value of the larger prototype, the smaller category is moved
toward the value of the smaller prototype, and similarly for
cuteness and ferocity. The idea is that given a pair of
examples, we are asked to choose, for example, which
animal is larger. We code the target example as being large
and the rejected example as being small. This primes our
future judgments on both of the examples (Luo, 2000).
Specifically, our internal representation of the target and
rejected examples are changed by some small factor
determined by experience and by the distance between
feature values of examples and prototypes. Note that our
prototype representation can also be changed if the target
example feature value is “more optimal” than the prototype
feature value. This can happen because we only update the
prototypes probabilistically (so the prototypes may not be
the best prototypes).

Next, we discuss the translation of the model to a
Bayesian network. As suggested by Koller & Sahami
(1997), we can represent categories as discrete nodes that
serve as parents of Gaussian feature nodes. Thus we
specify the statistics for each feature and query the category
node given the feature evidence. The problem to be
worked out is to implement an unsupervised learning
algorithm that updates the values that the category node can
take on as more evidence arrives. Fig. 7 shows an early
attempt at integration in which a superordinate parent
category is represented just as another evidence node.
Here we have assumed independence of each feature value.
The superordinate category node “large” is a binary
representation of a “decision” based on current feature
estimates. Note that prototype values are kept implicitly
within the distribution for the superordinate node. It may
be better to use decision nodes for the superordinate
category nodes, but we’re not sure how inference would
work.

Results

Fig. 1 shows the size of the category partition, the
categories given as examples, and the categories learned
using no model merging and no feature comparison. For
simplicity, only the size feature values of the categories are
shown. Similar results can be plotted for the cuteness and
ferocity dimensions. Note that a lot of categories were
formed despite data incorporation, because no pruning is
allowed. Fig. 2 shows the categories learned using model
merging alone and Fig. 3 shows the categories learned
using both model merging and feature comparisons. In
general, category partitions learned using feature
comparisons tend to generalize a bit more, so that we
typically get a smaller number of categories. Note that one
obvious problem with the model merging algorithm is that
it tends to give inaccurate values for animals whose size is
small.

We can change the parameters for both the model
merging and the feature comparison algorithms. Fig. 4 and
Fig. 5 shows the results for example runs for which the
algorithms took into account the size of the model more
and made greater changes to feature values during
comparison. Note that both learned categories are very
good. Note also that with feature comparison, we model
the values for the 3 and 7t categories better than with
model merging alone. Over many iterations of the
experiment, we find that feature comparison tends to do
wonders when pef is set to be small (P 0.1). In that case,
feature comparison tends to generalize more than model
merging alone.

Discussion

Our Bayesian model merging algorithm applied to
category-acquisition is not without its faults. For example,
we are assuming that in the presence of small sample sizes,
humans still believe that the distribution of feature values
in the real world is approximately normal for each distinct
animal. More reasonable approached involving the
Dirichlet density can be found in Anderson (1990). We are
also assuming that each feature comparison task occurs
regularly and that all features of a category are compared.
In the real world, this is rarely the case. We might be led
into comparing, for example, sizes more than cuteness, and
cats and dogs more often than polar bears and lady bugs. A
proper model for comparison tasks in early language
acquisition would involve modeling the world in which the
child lives, which is beyond our present scope and
capabilities. Note also that we are assuming the
independence of each feature given the category, which
cannot be a true model of the world. Finally, the model
assumes that model merging and feature comparison
happens independently. Note, however, that depending on
our current comparison task, we might be more or less
willing to merge disjoint categories. For example, we may



be asked to compare cardinals and blue jays. We don’t
have much of an idea of what they are and might consider
them to be close to each other in size. Might they also not
be in one category?

One other proposal would be to treat the problem as
minimization of Boolean complexity given features and
examples. The best model is that which minimizes the
minimal formula associated with the disjunctive normal
form of the evidence written with conjunction among
features and disjunction among examples. We haven’t
worked this out, however.

The Bayesian network representation needs to be
explored thoroughly. We need to work out the way
learning of category values will work for a Bayes net.
Superordinate category representation is another area for
improvement. One idea is to use separate nodes for each
category value (ie. animal name). Then all we have to do is
prune the network as more evidence arrives. The problem
is that each node would be the parent of the feature values.
Hence each augmentation of a feature adds O(k) links,
where Kk is the number of values a category can take on.

We should also allow feature values to link with each other,
thereby removing the feature value independence
assumption.

We presented a Bayesian approach to learning category
representation. We saw that learning is facilitated by
implicit interactions with the real world. Here, we
considered feature comparison and priming. The principle,
however, is more general. In modeling domain knowledge,
we need to consider the various contexts in which a name
can occur and the various interpretations the name can take
on with respect to superordinate category prototypes.
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Appendix

Matlab code for the algorithm can be found at
http//inst.eecs.berkeley.edu/~rluo/categ_learn_doc/
categ_learn.zip.

Run the file learn_animal_categories in Matlab to begin
experimenting. You should have the BNT toolkit installed
http://www.cs.berkeley.edu/~murphyk/Bayes/request.html.



Fig 1. Size features of categories learned with no merges and no compares.

Fig 2. Size features of categories learned with merges but no compares (expt 1).




Fig 3. Size features of categories learned with merges and compares (expt 1).

Fig 4. Size features of categories learned with merges but no compares (expt 2).




Fig 5. Size features of categories learned with merges and compares (expt 2).
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Abstract

Response delay and facilitation in categorical judgment tasks were studied under the
framework of two potentially competing theories. The negative priming model and the semantic
coding model were presented as possible explanations of response interference. To test the
models, subjects were asked to either choose the larger or choose the smaller of a pair of
animals. Reaction time (RT) differences were found when subjects were required to choose an
animal in the target trial that was previously ignored in the prime trial. For example, when
subjects were asked to perform the same categorical judgment (e.g. choose larger) in both the
prime and the target trial, mean (target trial RT minus prime trial RT) was found to be 29.9 msec.
When subjects were asked to respond to the smaller of two small animals that was previously
ignored, mean RT difference was found to be —152.1. Results indicate that neither negative
priming nor semantic coding fully explains the data. A related effect known as semantic

congruity, however, was found in the data and provided support for the coding model.



Response Interference in Categorical Judgment Tasks

We make binary categorical decisions almost continuously. Where should | move to?
LA or San Francisco? Which day was warmer? Yesterday or today? Who is faster? Dan or
Dave? Which is more important? Homework or video game? Natural questions arise in any
attempt to understand human decision making processes. The two most debated research
questions are: What type of information is represented by an encoding? And how does the
processed information affect categorical response? This paper examines both of these traditional
questions from a different perspective. Instead of focusing on “What?”” and “How?”” we will
concern ourselves with the question “When?”” namely, when do processing and response occur.

To describe categorical judgments more rigorously, two models of binary decision-
making are presented and compared under a standard experimental procedure designed to
measure reaction time. The first model was first used to explain a phenomenon observed in
rapid encoding-response experiments. Tipper (1985) presented his subjects with pictures of two
distinct objects, one in each color, and asked them to pay attention to only the object in a
specified color. In the prime trial, for example, subjects might be presented with a green trumpet
and a red anchor and might be asked to identify the green object. In the target trial, the
previously ignored anchor would now appear in green along with some other arbitrary red object.
It was found that in the target trial, reaction times (RTs) were significantly slower. Tipper
explained this phenomenon by postulating a “negative priming” effect in which previously
rejected stimuli suppressed subsequent response involving those stimuli. This model claims that
information (such as object identity) is processed by mechanisms that inhibit irrelevant details.

In contrast with negative priming’s explanation of rapid object-incoherent response tasks

is a different model that was first used to explain semantic information encoding during



categorical judgment tasks. Banks et al. were the first to propose a semantic coding model to
explain the results of symbolic comparative experiments (e.g. Banks, 1977). According this
hypothesis, three types of mental structures are responsible for comparative judgments: database,
processing codes, and processing mechanisms. Banks suggested that when a pair of stimuli is
first presented, the processing mechanisms “generate processing codes from the data base and
manipulate them until they match the previously stored and coded instructions” (p. 131). For
example, suppose that the subject is presented with a table and a car and asked to choose the
more expensive object. After this prime trial, the car is coded with E+ for expensiveness and
table is coded with I+ for inexpensive, since an object can only be expensive or cheap, and not
both. In the target trial, the same table is presented along with a box of crayons. When asked to
choose the more expensive object, the response will be table, but the reaction time (RT) will be
longer since the subject must convert the 1+ encoding to an E+ encoding. Note that this is also
what negative priming predicts: table is rejected in the prime trial, thus inhibiting the response in
the target trial.

Now suppose instead that the subject is presented with the table and a diamond in the
target trial. If she is asked to choose the less expensive object, the semantic coding model
predicts a faster RT (since table is already coded as I+). Negative priming, however, suggests
that the response ought to be slow because, again, the previously rejected stimulus (table)
suppresses subsequent response involving the stimulus. Here, then, is the trial that distinguishes
the two models.

Additional Considerations
Although each conjecture stated above gives a different prediction of the observed RT

difference between target and prime trials, we cannot conclude that they contradict one another.



Negative priming was traditionally used to model rapid, previously inhibited responses in the
probe trial while semantic coding was used to explain memory mismatch between response and
question posed. Studies have shown (Banks, Fujii & Kayra-Stuart, 1976) that in a set of trials
involving the comparison of magnitudes of a pair of digits, subjects were faster when asked to
pick the larger of two large digits (e.g. 8 and 9) and slower when asked to pick the smaller of two
large digits. Similar effects were observed for smaller digits. It is possible that long term effects
of repeatedly coding large digits as large and small digits as small contribute to this
phenomenon. To distinguish the delay associated with judgment-instruction mismatch from
semantic coding effects due to prime trial stimulation, we will refer to the phenomenon described
above as semantic congruity, as Banks et al. have done.

Another complication involves the size differences between a pair of stimuli. Moyer and
Landuer (1967) found that RTs associated with digit comparison tasks increased as the numerical
difference between the two digits decreased. For example, subjects gave quick responses when
asked to choose the larger of 3 and 8, and slow responses when asked to choose the larger of 6
and 7. This phenomenon, which we refer to as the distance effect, needs to be accounted for
even under situations when semantic congruity is observed.

Instruction mismatch between prime and target trials can also influence the observed RT.
We expect that subjects would need additional processing time to encode a new instruction
during target trial (e.g. Which is smaller?) relative to the old instruction given in the prime trial
(Which is larger?). Care must be taken to ensure that instruction mismatch is accounted for by
appropriate controls.

We also need to control for the RT decrease or increase due to expectancy. When

subjects are presented during the target trial with a stimulus that has already appeared in the



prime trial, they may respond differently in different situations. They could, for example, find
the coincidence bizarre. In this case, RTs would be longer than normal. They could also find
that the processing is easier perform (since they already coded for the stimulus in a previous
trial). In this case, RTs would be shorter than normal. Expectancy is an important contributor to
observed RTs; another form of control is needed to account for it.

Recent Developments

Confrontation between negative priming and semantic coding was never considered in
the literature because the former was used to model rapid inhibitory decision-making processes
and the latter was used to predict RTs for a single trial due to coding mismatch in previous trials.
Semantic mismatch was generally regarded as the result of discrepancies between the
representation of the stimulus in the present trial and its representation in short or long term
memory. Negative priming, on the other hand, modeled small RT differences in fast responses
that rely on the speed of mental reflex. In other words, subjects were forced to analyze even the
rejected stimulus in a semantic coding task, but were encouraged to pay no attention to the
rejected stimulus in a negative priming task. Recall that in Tipper’s original experiments,
subjects were not required to pay attention to the green object in order to recognize the red
object.

Recently, the interpretation of negative priming given above has been dispelled by
MacDonald, Joordens, and Seergobin (1999). In a series of experiments designed to test
negative priming under conditions where attention to distractors was necessary, MacDonald et al.
found that negative priming effects were enhanced. Subjects were asked to discriminate (not just
recognize) the larger of two animals in both the prime and the probe trial. Distractors in the

prime trial became targets in the probe trial. It was found that probe trial RTs were significantly



longer than those in traditional negative priming experiments (e.g. Tipper, 1985, using Stroop
color words). MacDonald et al. believed that their findings challenged “the basic assumption
that the negative priming effect arises because the critical item was ignored or not attended to on
the prime trial” (1999). We may ask, however, “Are these RT differences due to negative
priming, or some other effect?” To qualify their interpretation, the present study examines a task
in which both negative priming and semantic coding make predictions about outcome RTs. The
task even allows us to distinguish between the two models because they give different

predictions for a specific type of trial.

Method

Subjects

Six students at the Claremont Colleges (Pomona College and Harvey Mudd College,
Claremont, California) participated in the experiment. Two of the students generated data for
qualitative analysis only and did not sit through the entire experiment. The other subjects each
performed the experiment three times, the first run being a practice exercise. All participants
were sufficiently fluent in English to understand the stimuli displays. No subject had any
difficulty seeing the stimulus array.
Apparatus

A Macintosh computer from the Pomona College psychology lab was used to display the
stimuli and record the RTs of the response. The Superlab program was used to perform the
experiment.
Procedure

Before the trials, subjects were given a list of all animal names used in the experiment:



mouse, dog, horse, elephant, and whale. They were asked to verify the size order of the animals
by ranking them in increasing integers of 1 to 5 (1 being the smallest). This was done to ensure
familiarity of the subjects with the stimulus array. During each run, general instructions were
followed by a total of 66 stimulus displays. Each successive display was shown right after the
response to the previous display was received. Instructions for each pair of stimulus (i.e. choose
smaller or choose larger) were shown at the center of the top of the screen; two animal names
were shown at the left and right sides of the screen. The subjects were asked to press the “z” and
“m” buttons to select the leftmost and rightmost animal, respectively.

Four types of trials were presented during each run. Fig. 1 shows a typical pair of prime
and probe displays in the first type of trials (reliability trials). Note that negative priming (NP)
and semantic coding (SC) give the same prediction in reliability trials. NP predicts a RT delay in
the probe trial due to previous inhibition and SC predicts a RT delay in the probe trial due to
coding mismatch. The second type of trials (discrimination trials) presented displays similar to
the ones shown in Fig. 2. In this case, NP still predicts a RT delay during the probe trial. SC,
however, predicts a shorter RT in the probe trial. As Fig. 2 shows, the distractor in the prime
trial (horse) is coded S+. When asked in the probe trial for the smaller of whale and horse, the
previously S+ encoding of horse ought to facilitate the response. Note, however, that in nature,
horse is not generally speaking a small animal. Thus the semantic congruity effect predicts a
slower RT just for the probe trial since the subject is asked to choose the smaller of two large
animals. This illustrates a peculiarity in the discrimination trials. As Fig. 3 shows, displays
involving a match in the instruction-judgment relationship (i.e. semantically congruent trials)
were also used. In these pairs of prime and target trials, both semantic coding and semantic

congruity predict a faster RT during probe response. From Fig. 3, dog was first coded as S+ in



the prime trial. During the probe trial, the previously rejected smaller animal (dog) was asked
for. In this case, dog is a small animal, so semantic congruity predicts a fast RT. Semantic
congruity was not explicitly considered in the reliability trials. In that case, however,
semantically congruent pairs were not systematically distributed. In calculating mean RT
differences between prime and probe trials (i.e. mean(probe trial RT — prime trial RT) ), we
expect the random placement of semantically congruent and incongruent pairs into probe and
prime trials to cancel out the net semantic congruity effect.

The remaining two types of trials were part of a network of controls designed to isolate
the difference in prediction given by NP, SC, and semantic congruity. Typical displays of
control trials are shown in Fig. 4. Notice that prime and target stimuli are all different; no
linkage between prime and target trials are predicted. To account for the expectancy effect, a
new type of control known as associated control was introduced (see Fig. 5). In the associated
control trials, the previously accepted animal was again asked for in the probe trial. If
expectancy is indeed a factor, we expect RT differences between the responses given in prime
and probe trials. We then subtract this difference from reliability and discrimination trial RTs to
get the net effect of NP or SC.

To control for the distance effect, only animals similar in size were used in the reliability
and discrimination trials. For example, elephant may be compared with horse or dog, but not
with mouse. Similarly, whale would be compared with horse or elephant, but not with dog. The
distance effect was not explicitly accounted for in the control and associated control trials
although the placement of long distance vs. short distance pairs was randomized. If the distance
effect were important in these trials, they would cancel each other when mean RT differences are

calculated, since it is equally likely for a mouse-whale pairing to occur in the prime or the probe



trial. Note also that each animal (mouse, dog, horse, elephant, and whale) is sufficiently
distinguishable from each other in terms of size. There is also no clustering of animals into a
particular size range. This ensures that the distance effect is predictable and easy to account for.

To control for instruction mismatch between prime and target trials, we allowed some
control and associated control trials to display prime and probe arrays that differed in instructions
(i.e. Which is larger? vs. Which is smaller?). The RT delay associated with these trials should be
subtracted from RT differences found in discrimination trials, because all discrimination trial
stimuli involved changes in instruction between prime and target displays.

Serial positioning of the stimuli was controlled by random placement of the animal
names in the left and right sides of the display. As a consequence, correct keystroke responses
for each display was also randomized (i.e. the probability of having the same correct keystroke
response for both prime and probe trials is 0.5). Residual encoding was controlled by displaying
a normative pair of stimuli before each trial. These normative displays contained animal names
that matched none of the three animals names found in each reliability, discrimination, and
associated control trials. The idea is that normative displays “normalizes” the playing field
before each trial, so that RT differences can reliably be attributed to the prime and target trial
responses. For the control trials, a normative display consisted of the animal ignored in the
probe trial and another animal that appears in neither the prime nor the probe trials. Since there
were only five animal names available, we felt that having an ignored name in the normative
display would make virtually no difference in the mean RTSs.

Another variable that we attempted to control was the time delay between successive
displays. In half of the runs, subjects were given the standard treatment of randomized blocks of

six reliability trials, six discrimination trials, six control trials, and four associated control trials.



Each trial consisted of three displays (normative, prime, probe) in sequence. The order of
appearance of the trials was randomized. Subjects were not given any breaks between
successive stimuli pairs. In another half of the runs, each trial was preceded by a 2.5 second
blank display followed by an instruction which asked the subject to press both “m” and “z” keys
simultaneously to continue. The effect of these two extra displays was to slow down the
experiment and eliminate any possible residual encoding left over from the previous trial. By
comparing the results found in the fast runs against the slow runs, we can examine the effect of

time delay between successive trials.

Results

In this experiment, we are interested in the RT difference (ART) given by probe trial RT
minus prime trial RT. It this number is positive, a RT delay in the target trial is observed; if this
number is negative, task facilitation in the target trial is observed. Table 1 shows the mean ART
described above for each type of trial, averaged from about 20 to 40 samples each. Extreme
outliers are excluded. Notice that ART for the discrimination trials is greater than the ART for
the reliability trials. This, of course, does not take into account instruction mismatch effects,
expectancy, or semantic congruity. Note also that the discrimination trials involving
semantically congruent target responses (discrimination trials 3 and 5) display a large facilitation
in the probe trial response. ARTSs for instruction mismatch trials (control trials 2 and 5,
associated control trial 1) are also calculated. Uncertainties for the data are given by standard
deviation of the mean of the sample. Fig. 6 shows a box plot of the set of data. Note the greater
variability of ARTs for semantically congruent discrimination probe trials. This is due to the

smaller sample size for these trials, which are a subset of the discrimination trials.



To find the actual effects on ART due to each type of stimuli, we first subtract the mean
control trial ART from the mean ARTS for reliability, discrimination, associated control, and
semantically congruent trials (instruction mismatch trials are essentially a subset of the control
trials). The reason mean ART for control trials is slightly negative is that subjects felt more
comfortable with each successive display during any given trial (the effect is most conspicuous
for the slow runs). Next, we subtract the mean associated control ART from the result calculated
as above. The mean ART for associated control trials is slightly positive (since we had to
subtract control trial mean ART from it to get the net effect) indicating a RT delay due to
expectancy. Finally, we subtract the mean instruction mismatch ART from the resulting mean
ARTSs of discrimination and semantically congruent trials found above (we do not subtract from
the reliability trials because for these trials, all instructions were congruent for prime and probe
displays). Doing all the calculations we just mentioned, we obtain the net ART due to specific
types of trial stimuli. These results are given in Table 2 and illustrated graphically in Fig. 7.

In Table 2, the error given for each mean ART is found by propagating from the errors in Tablel.

From Fig. 7, we observe that negative priming cannot explain the semantic congruity
effect. For example, given two small animals, subjects will choose the smaller of the two
quickly despite what occurs in a previous trial. Negative priming does not explain ART for
discrimination trials particularly well since the mean ART is nearly zero, indicating neither
inhibition nor facilitation. Semantic coding does not explain the discrimination trial ART very
well either since the expected facilitation does not occur. In any case, both theories support the
findings in the reliability trials since mean RTs are increased in the probe trial as expected. The
most statistically significant piece of information in Table 2 is the large target facilitation found

in discrimination trials where targets and instructions are semantically congruent (e.g. Fig. 3).



This indicates that even in a fast experimental task, previous semantic encoding is extremely
important. Every time we see the words elephant or whale, for example, we automatically
retrieve out of our memory the concept of large size. It appears that semantic congruity is a part
of every judgment the subject makes. The influence of development and previous coding seems
strong even for a rapid judgment task.
Fast vs. Slow Runs

Further analysis of the experimental data reveals some surprising results. When we
separate the mean ARTSs for slow and fast runs of the experiment, we find that, contrary to
expectations, reliability trial mean ART decreases and discrimination trial mean ART increases.
Semantically congruent discrimination trial mean ART stays about the same. Negative priming
can now better explain the discrimination data and semantic coding falls apart for the same data.
Both results, however, are extremely variable. Many of the effects observed may simply be due
to random chance. We therefore concluded that to alter ARTs significantly, greater change of

speed is necessary for this particular task.

Discussion
According to MacDonald et al. negative priming effects are increased for tasks where
attention to distractors is required. In this experiment, we have challenged the assumption that
the RT increases observed for these tasks are actually due to negative priming. Negative priming
predicts that previously ignored stimuli are inhibited in the probe trial. We found, however, that
in tasks such as those given by Fig. 3, response to ignored stimulus is actually significantly
enhanced in the probe trial. If negative priming is to explain the wider scope associated with

semantic interference tasks, it must append to its simple theoretical framework an account of



phenomena such as the semantic congruity effect.

According to Banks et al. semantic coding is responsible for the cross-trial interference
found in a categorical judgment task. While this experiment does not contradict the semantic
coding hypothesis for successive trials, it does offer some insight into possible improvements of
the theory. It is noted that long-term coding effects are more important than immediate encoding
of information. In fact, between-trials encoding seems to neither facilitate nor delay probe trial
RTs. This experiment supports the claim, however, that information in a categorical judgment
task is indeed coded by categorical variables such as L+ and S+.

Implications

Looking again at the data from Table 2, we must conclude that semantic coding or
learning takes place slowly. In a rapid decision-making task, information is retrieved from
memory, and not necessarily encoded from previous trials. Hence the effect of semantic
congruity is significant but the effect of semantic coding is not. We can understand the data by
postulating an automatic mechanism for semantic processing. Every time we see the word whale
or elephant, L+ encoding is retrieved from memory, and not directly encoded. The next time we
see whale or elephant, L+ is retrieved again. This experiment supports the idea that the mind
does not keep a handful of information at its fingertips, even in a rapid binary decision task. If it
did, we would see large semantic coding effects or perhaps even negative priming. Instead, the
mind asks for the encoding again and again, comparing it each time to relevant information and
discarding the result as time passes. This new model of code processing is given in Fig. 8.

Under this model of memory processing, we would explain a typical trial as follows.
First the subject is told about the category of discrimination, in this case, size. This shifts the

memory system into a binary coding mode involving two categories: L+ and S+. A whale and a



horse are presented, with instructions asking for the larger animal. As soon as the word whale is
read, the binary coding machine (mind) automatically processes whale as L+. Similarly horse is
processed as L+. Now the machine must distinguish between the larger of two L+s. This is
where the bulk of the processing time is distributed. After generating a response, most of the
encoded information is thrown out since a new pair of stimuli now appears. The process
continues until the end of the experiment. How, then, does the mind learn (and remember certain
codes) ? It learns by focusing attention to the task. It must process and encode a specific piece
of information continuously. For example, if it must learn that a “quoma” is “large,” then it must
associate quoma with the L+ binary encoding. If the association between quoma and large is
weak, RT for the next target trial quoma will be long. For familiar objects, however, the
machine already has encoded information available; it need not encode additional information.
Qualification

We have been concentrating on the large drop in target RT associated with semantically
congruent discrimination trials. One important qualification must be put in place. When we
examine the 5th discrimination trials, we note that not only is the probe display semantically
congruent, but that the prime display is semantically congruent as well (see Fig. 3). (This does
not occur in the other semantically congruent discrimination trial.) Yet we observe an extremely
negative ART for these trials? If semantic congruity is the sole factor in determining RTs, then
trial 5 ARTs should be zero. This suggests that there is a complex interaction between semantic
coding and semantic congruity. It appears that long term and short term processing can influence
each other in complicated ways. If neither semantic coding nor semantic congruity can fully
explain the data, then we need a new theory that models the interactions between long term and

short term semantic coding. The solution to this problem may lie in the analogous interactions



between automatic and controlled processing.
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Tables and Figures

Type of Trial Mean RT Error in Mean RT
Difference Difference

Reliability 23.3 41
Discrimination 58 47
Control -37.8 37
Associated Control -6.6 39
Semantically -95.2 90
Congruent

Instruction Mismatch 63.5 46

Table 1: Mean of probe trial RT minus prime trial RT for each type of trial. Note that semantically
congruent trials are a subset of discrimination trials and that instruction mismatch trials are a subset
of control and associated control trials.

Type of Trial Net Mean RT Error in Net Mean RT
Difference Difference
Reliability 29.9 77
Discrimination 1.1 92
Semantically -152.1 120
Congruent

Table 2: Net mean RT differences calculated by taking into account appropriate controls,
expectancy and instruction mismatch. This gives the net effect of varying each probe trial variable.
Note that only semantically congruent trial data is significant with respect to the errors.




Prime Trial: Probe Trial:

Which is larger? Which is larger?

U WhIALE | |RORSE  [ELEPRANY

Figure 1: Typical displays in prime and probe trials in a reliability trial. Predictions of each model:

Negative priming: elephant ignored in prime, response to elephant slow in probe.

Semantic coding: elephant coded as S+ in prime, response to elephant slow in probe since we ask
for the larger animal.

Prime Trial: Probe Trial:

Which is larger? Which is smaller?

ELEPRANT  FORSE WHALE  WORSE

Figure 2: Typical displays in prime and probe trials in a discrimination trial. Predictions are:

Negative priming: horse ignored in prime, response to horse slow in probe.

Semantic coding: horse coded as S+ in prime, response to horse fast in probe since we ask for the
smaller animal.




Prime Trial: Probe Trial:

Which is larger? Which is smaller?

e HORSE DOGRELERKAN]

Figure 3: Typical displays in prime and probe trials in a semantically congruent discrimination

trial.

Negative priming: dog ignored in prime, response to dog slow in probe.

Semantic coding: : dog coded as S+ in prime, response to dog fast in probe since we ask for the
smaller animal. (Due to semantic conaruitv. resnonse should be verv fast.)

Prime Trial: Probe Trial:

Which is smaller? Which is smaller?

ELEPRANT D06 MoUsE  [WORSE

Figure 4: Typical displays in prime and probe trials in a control trial. Predictions for each model:

Negative priming: elephant ignored in prime, no effect on response to horse in probe.

Semantic coding: elephant coded as L+ in prime, no effect on response to horse in probe.
(Control is used to compute net effect of trial stimuli arrangements.)




Prime Trial: Probe Trial:

Which is smaller? Which is larger?

HORSE  [ELEPRANY HORSE  IHOUSE

Figure 5: Typical displays in prime and probe trials in an associated control trial. Predictions are:

Negative priming: elephant ignored in prime, no effect on response to horse in probe.

Semantic coding: horse coded as S+ in prime, response to horse slow in probe since we ask for the
larger animal.
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Discrimination _|
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Figure 6: Box plots of the result in Table 1. Note the outliers represented as stars.
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Figure 7: Graphical display of net mean RT differences found in Table 2. Error bars omitted.
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Figure 8: Revised model of semantic information processing using the memory retrieval machine.
Here, the memory machine has been primed as a binary (large/small) processor. The processing is
semantically congruent in this case.
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Abstract

Motor planning is modeled as a tracking problem in the case of rapid mo-
tor executions as in swatting a fly. Visual feedback and commanded motor
movement are coupled in a linear dynamical systems graphical model of the
task. Parameters learned by the EM Algorithm on an artificial data set
reflect underlying system dynamics.

1 Introduction

How does motor planning and execution incorporate visual information when
tracking a fast-moving object in space?” One hypothesis involves the activ-
ity of an internal model consisting of a forward predicting and an inverse
kinematic module [10]. Reviews by Jordan ( [4] and [3]) give more details.
A recent attempt to model selection of motor programs learns an HMM-
based switch model for different types of objects [1]. A similar approach is
advocated by Shademehr and Thoroughman [9].

Our approach here is simpler. We treat the motor planning problem as a
tracking problem in which the nervous system estimates the positions of both
the target and the hand position. The resulting graphical model is a coupled
linear dynamical system that can be learned using the EM Algorithm. The
approach is similar to what Wu and Huang calls co-inference tracking [11].
In their paper, they gave a sequential Monte Carlo algorithm that utilizes a



2 GRAPHICAL MODEL 2

bottom up EM step to track both color and shape distributions in a video
sequence. We will begin wih a similar model adapted, in our case, to track
a target in 2D with a 3D representation of hand position and velocity. We
hope to extend the model by incorporating a switching motor control module
within the arm location estimator.

2 Graphical model

Every node in the model is continuous, with equations that look like

Hy(t+1) = BVy(t+1)— Hy(t) +Wu(t),
Vi(t+1) = AVy(t) + Wy (t),

H,(t) = CyxH,t)+ Ug(t),

V() = CvVi(t) + Uy (2),

where H is the control module associated with the hand, H, is the estimated
hand parameters (in particular, hand position), V; and V,, are the estimated
and observed target motion characteristics, A, B, and C' are corresponding
output matrices, and the Ws and Us are noise. H, and V,, are observed. Note
that the first equation accounts for sensory correction due to visual feedback.

Figure 1: Graphical model of visuomotor tracking. Note that VisSt and
Hand nodes are observed in our case.

From Figure 1, we see that visual information enters the system by cor-
recting the control signal at the next time step (the alignment of the time
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slice is arbitrary). Given the controller, the observed motor characteristics
are independent of all visual information.

3 Implementation and results

I first built a Kalman filter with RTS smoothing ([5]) for tracking positions
and velocities, for the V; and V,, cluster of the graphical model. I implemented
a sequential MCMC ([8], [7]) algorithm known as the Particle filter [2], which
can handle the case of non-Gaussian emission and transition probabilities. I
tested the two algorithms on data sampled from a linear dynamical system
with Gaussian emissions (see the file track.m; availability discussed in the
appendix).

Noisy observations of particle positions. Kalman filter estimates of particle positions.
T T T

RTS smoother estimates of particle positions. Particle filter estimates of particle positions
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The upper left figure is the observed data, the upper right is the Kalman
filtered trajectory with Gaussian confidence elipse, the lower left is the RTS
smoothed trajectory, the lower right is the particle filtered trajectory with
variance calculated across samples for each dimension (and zero covariance).
Note that the Particle filter has nearly constant variance across time. The
major disadvantage of the Particle filter is that it is not obvious how to
learn the parameters of the sample propagation (transition probabilities)
and likelihood weighting (emission probabilities). We could, for example,
run the algorithm many times to learn the optimal parameters. Here, I set
the parameters equal to the initial Kalman filtering parameters.

Next I implemented the model of Figure 1 using linear dynamical compo-
nents. I generated some test data from reasonable dynamical considerations.
For example, subjects usually move slowly initially, speeds up in the middle
of the trajectory, and slow down again towards the end of the movement.

2D view of particle and arm positions in time.

20
15+
101
> 5|
0 -
Observed traj V0
-Sr —— True traj V,
_x_ Observed arm motion H0
-10 Il Il L L L L J
-2 0 2 4 6 8 10 12 14

Figure 2: Artificial data used to train the graphical model, shown in 2D.
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Figure 3 shows the V, as green dots and H, as red lines against the
true target trajectory in black. Figure 3 shows the 3D representation. Our
model assumes a 6D H; representing the three spatial dimensions and their
derivatives, a 4D V; for visual tracking of 2D coordinates and their time
derivatives, and 3D H, and 2D V|, observations of spatial locations. The
parameters learned are given in the appendix. A log likelihood trace of EM
is shown in Figure 3.

Observed arm motion H0 and true target trajectory VS

X

Figure 3: Trajectory of arm movement used to train the model.

4 Future work

It would be fruitful to conduct a linear systems analysis of the stability of
the system. We have the visual signal as input, the motor signal as feedback,
and the arm as the plant; output is the controller parameters.

The EM Algorithm takes a long time on this model. It would be useful
to implement variational inference for this factorized model, as is done in
[11]. More analysis of the results is necessary. In particular, we can look into
the velocity profiles of the learned model. We investigate how spatial cueing
effects come about by looking for consistencies among parameters learned



4 FUTURE WORK

Zoomed in trace of log likelihood during DBN EM estimation
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EM iterations

Figure 4: Trace of log likelihood during EM.

14




4 FUTURE WORK 7

for different conditions in an experiment. We can examine the smoothness
condition that is learned by the model.

The next step is to build a modular control system within the visuomotor
tracking framework. This allows us to recognize and track different objects
using a switch model. For example, swatting a fly is much more difficult than
catching a baseball. We want to capture this difficulty in parameters of the
model learned.

Appendix

Matlab code is found at http://inst.eecs.berkeley.edu/~rluo/cs281.
See in particular the file vismotor.m to start things off. Some portions of
the code needs the BNT toolkit written by Kevin Murphy.

The parameters learned by EM for the model in Figure 1 are:

node H_sO
m: 0.2125
-0.0174
2.0652
0.2764
-0.3802
-0.8041
s: 0.0058 -0.0018 0.0000 0.0000 0.0000 -0.0000
-0.0018 0.0025 0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0370 -0.0445 0.0802 -0.0502
0.0000 0.0000 -0.0445 0.1391 -0.2566 0.1239
0.0000 -0.0000 0.0802 -0.2566 0.4787 -0.2293
-0.0000 -0.0000 -0.0502 0.1239 -0.2293 0.1175
node V_sO
m: 2.0652
0.2764
-0.3802
-0.8041
s: 0.0370 -0.0445 0.0802 -0.0502
-0.0445 0.1391 -0.2566 0.1239
0.0802 -0.2566 0.4787 -0.2293
-0.0502 0.1239 -0.2293 0.1175
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node

O O O O O

node

m: O.
0.
s: 0.

node
m:

O O O O O O O

node
m:

SO O O O O

H_o

.0000
.0000
.0000
. 7829
.2654
.2374 -0.0461 2.4727

V_o

0000
0000
3569

H_s1

.0000
.0000
.0000
.0000
.0000
.0000
.3214
-0.0319 0.
0.0612
0.
0
0

1263

.0506
.1083

V_s1

.0000
.0000
.0000
.0000
.0724
-0.0086 0.

0.2654 1.2374
1.8653 -0.0461

-0.
-0.3596 1.

-0.

-0.

3596
0751

0319 0.0612 0.1263 0.0506 0.1083
0901 -0.0219 -0.1511 -0.0948 -0.0554

.0219 4.6232 8.6694 7.0972 6.5681
.1511 8.6694 17.0857 13.6294 12.7710
.0948 7.0972 13.6294 11.4500 10.2067
.06b64 6.5681 12.7710 10.2067 9.7093

0086 -0.0062 -0.0170
0501 -0.0154 0.0176

-0.0062 -0.0154 0.0824 -0.0183
-0.0170 0.0176 -0.0183 0.0369
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