
Code
S ec t i on

Day 1

Presenter
Presentation Notes
Welcome to Bootcamp and welcome to the first day of your code class. I’d like to start with a few reminders. First, today will be a lot all at once. It’s an overview, a map of what goes into coding, and we’ll wind up spending entire days on topics glossed over today. So don’t flip if it seems like we’re going too fast. We are going too fast; we’re trying to introduce some framework to fit the things you’ll be learning into. But we’ll return to the landmarks we sped by in the coming classes. Secondly, you can’t break anything by coding. Well, that’s not entirely true, but you won’t break anything accidentally. You’ll have to know what you’re doing and what you want to do in order to break anything by coding.

Ask class:
Who has experience with code? If you do have experience, what have you worked on?

Introductions Instructor background
Student introductions

Creative Code What is code?
Problem decomposition
Learning languages

BREAK

Processing Anatomy of a sketch
Drawing with Processing
Live code exercises

Day 1 Agenda

Presenter
Presentation Notes
Welcome to Bootcamp and welcome to the first day of your code class. I’d like to start with a few reminders. First, today will be a lot all at once. It’s an overview, a map of what goes into coding, and we’ll wind up spending entire days on topics glossed over today. So don’t flip if it seems like we’re going too fast. We are going too fast; we’re trying to introduce some framework to fit the things you’ll be learning into. But we’ll return to the landmarks we sped by in the coming classes. Secondly, you can’t break anything by coding. Well, that’s not entirely true, but you won’t break anything accidentally. You’ll have to know what you’re doing and what you want to do in order to break anything by coding.

Ask class:
Who has experience with code? If you do have experience, what have you worked on?

talk SLOW, ask them to CONTRIBUTE

Why do we code?

Presenter
Presentation Notes
We code because we want to make computers do things for us. The most obvious places we interact with code is when we ourselves use software. But there are many things controlled by software that we do not directly interact with, from traffic lights to the advertisements in Times Square. And software that someone programmed is useful for all sorts of things, from the Adobe tools we know and love/hate to CAD programs that help industrial designers make things like our smartphones and medical tools that keep us alive when we’re sick.

Highlight some art examples, some daily use examples.

Code

Code

how are you

你好

como allez vous

こんにちは

como estas

Presenter
Presentation Notes
languages are codes: for communicating between humans and machines.
Dumbing us down like robots.

What is code?

Presenter
Presentation Notes
Practically speaking “code” is a set of instructions for a computer. When coding, there are two steps at the highest level: first, you must understand and decompose your problem; next, you must describe those steps in a logically thorough way that a computer can understand.

Translating Instructions
For a Computer

Presenter
Presentation Notes
How does one translate ideas and tasks to a computer?

It helps to consider what a computer is and what it can do at its lowest level*.

* Cheating a little bit here

What computers do:
Store information as 1s and 0s and

perform math and logic operations on it

Presenter
Presentation Notes
In the most basic terms, a computer is a cpu and some memory. We store information in memory. We use the cpu to perform operations on the information in the memory - comparisons and mathematical operations, primarily.

Computers can't inherently do much of what we'd consider interesting -- but we can tell them how to do interesting things with their limited vocabulary.

Intermediate Languages and Libraries
Expand the Computer’s Vocabulary

Presenter
Presentation Notes
Some people built intermediate languages in between the machine code and the humans. These are the programming languages and environments that we commonly use like.

Presenter
Presentation Notes
Swift – for making iPhone and iPad applications

Presenter
Presentation Notes
Unity - a good option for making games AND art experiences

Presenter
Presentation Notes
C++ & openFrameworks for general creative technology

http://www.youtube.com/watch?v=6u6IDorMKAs

Processing can be used in physical
computing, interactive media, and
image generation.

More Processing projects

Presenter
Presentation Notes
And Processing, another creative technology-oriented environment. Processing also has a focus on pedagogy, and it is what we will be learning in this course.

As an aside, note that this is not a screen-based work – this is computationally-driven 3D printing. So if you find yourself frustrated with doing screen-based work in bootcamp, know that you will be able to use code to both control and create physical objects.

http://www.terrapattern.com/
https://vimeo.com/106453847
https://processing.org/exhibition/
https://bjoernkarmann.dk/objectifier

Variables

Presenter
Presentation Notes
Variables are how we store information. They’re all 1s and 0s at the end of the day, but to make programs easier for us to reason about and safer, variables have types that tell the computer the amount of memory to reserve and that define how the programming language will interact with it.
Students should have some basic familiarity with these after summer homework. Prompt students to answer questions, fill in these answers themselves.

Types of Variables

In groups of two or three,
define one of these. Write
your definitions on the
board.`

i nt

f l oa t

c ha r

s t r i ng

bool ea n

Presenter
Presentation Notes
Give students 8 minutes to discuss answers in groups, assigned to variable types. Each group should fill in answer on whiteboard/typing in on slide/google doc.

Types of Variables

These are some, but not all,
primitive types.

i nt s t or es a n i nt eger
(eg. 1)

f l oa t s t or es a number wi t h a
dec i ma l poi nt (eg.

9. 31)

St r i ng s t or es t ex t (“ Boot c a mp
2016”)

bool ea n t r ue/ f a l s e

Presenter
Presentation Notes
Give students 8 minutes to discuss answers in groups, assigned to variable types. Each group should fill in answer on whiteboard/typing in on slide/google doc.

Using variables

Use println() to receive
values back in the console.

i nt myNumber ;
my Number = 10;
pr i nt l n(my Number) ;

> 10

my Number = my Number + 1;
pr i nt l n(my Number) ;

> 11

St r i ng t hi s Sc hool = “ Pa r s ons ” ;
pr i nt l n(t hi s Sc hool) ;

> Pa r s ons

Presenter
Presentation Notes
Print out live if you want, but keep live code to a minimum here.

Functions

Presenter
Presentation Notes
Functions are how we bundle up instructions for a computer so we can call them again later.

Function example

This example describes a series of
materials and actions to accomplish
an overall goal: putting on a shoe.

You’ll need some specific materials:
a shoe, and a foot.

voi d put ShoeOnFoot (Shoe my Shoe,
F oot my F oot) {

pi c k Up(my Shoe) ;
l i f t F oot (my F oot) ;
l ower F oot I nt oShoe(my F oot ,

my Shoe) ;
t i eShoe(my Shoe) ;
r e l ea s eShoe(my Shoe) ;

}

Presenter
Presentation Notes
[example of function]

voi d put ShoeOnFoot (Shoe my Shoe,
F oot my F oot) {

pi c k Up(my Shoe) ;
l i f t F oot (my F oot) ;
l ower F oot I nt oShoe(my F oot ,

my Shoe) ;
t i eShoe(my Shoe) ;
r e l ea s eShoe(my Shoe) ;

}

Function example

This example describes a series
of inputs and actions to
accomplish an overall goal:
putting on a shoe.

You’ll need to execute some
specific actions: picking up your
foot, etc.

Presenter
Presentation Notes
[example of function]

Problem Decomposition

Presenter
Presentation Notes
What does it mean to decompose and understand a problem? It means breaking it into its parts and understanding how these parts interact — both how they *should* interact, as well as how they *can* interact.

Peanut Butter &
Jelly Sandwich

2 sl i ces of br ead
Pea nut But t er
J el l y

1) Spr ea d pea nut but t er on
one s l i c e of br ea d

2) Spr ea d j e l l y on t he ot her
s l i c e of br ea d

3) Put t he pi ec es of br ea d
t oget her

Presenter
Presentation Notes
Recipes are often used as an example of code for humans: preheat an oven then mix specific quantities of sugar, flour, water, and eggs in a bowl then put that mixture in a container in the oven for 30 minutes and you might ought to wind up with cookies.

See how it took the process of ‘making a cookie’ and identified all the things and the actions we ought to take on those things?

Recipe Breakdown

Var i abl es:
br eadSl i ce1
br eadSl i ce2
peanut But t er
j el l y

Funct i ons:
spr eadOnBr ead()
put Br eadToget her ()

Presenter
Presentation Notes
When we think about how to break this down further, we can think of the ‘things’ as variables and the tasks as ‘functions’.

Nouns = variables
Verbs = functions

That covers the best case scenario, where everything works and goes as planned. That’s the *should*. Note that there are many other possibilities. What happens if the oven is broken? If the eggs are spoiled? If there is not enough sugar? And so on. When programming, you also have to cover these situations or your program likely will not work in practice.

Pseudocode 1

Pseudocode is useful
for breaking down and
understanding a
complex task: translate
code to “language”

/ / spr ead peanut But t er on
br ea dSl i c e1

/ / s pr ea d j e l l y on br ea dSl i c e2

/ / put br ea d s l i c es t oget her

Presenter
Presentation Notes
When we think about how to break this down further, we can think of the ‘things’ as variables and the tasks as ‘functions’.

Nouns = variables
Verbs = functions

That covers the best case scenario, where everything works and goes as planned. That’s the *should*. Note that there are many other possibilities. What happens if the oven is broken? If the eggs are spoiled? If there is not enough sugar? And so on. When programming, you also have to cover these situations or your program likely will not work in practice.

mai n() {
s pr ea dOnBr ea d(pea nut But t er ,
br ea dSl i c e1) ;

s pr ea dOnBr ea d(j el l y , br ea dSl i c e2) ;

put Br ea dToget her () ;
}

Pseudocode 2

Pseudocode is useful
for breaking down and
understanding a
complex task.

Presenter
Presentation Notes
When we think about how to break this down further, we can think of the ‘things’ as variables and the tasks as ‘functions’.

Nouns = variables
Verbs = functions

That covers the best case scenario, where everything works and goes as planned. That’s the *should*. Note that there are many other possibilities. What happens if the oven is broken? If the eggs are spoiled? If there is not enough sugar? And so on. When programming, you also have to cover these situations or your program likely will not work in practice.

1. With a partner, write out the instructions
for making a sandwich or another food.

1. Swap instructions with another team.

1. Think through the instructions literally and
specifically: What happens?

Pseudocode: Your Turn!

Presenter
Presentation Notes
Think of a simple activity then identify the variables and functions you would break it down into.

This should be a lesson in breaking down a problem, and in how a computer follows instructions. Following the instructions should be difficult and not successful!
Students should begin to comprehend:
The need to declare variables, for example, you can’t say “pick up bread” if there’s no bread yet.
The way computers follow instructions step-by-step and literally, with no interpretation for what make sense to a human.

Br eak
Return in 10 minutes

Presenter
Presentation Notes
Students should have Processing installed! If they do not, this would be a good time for a break/install time.

Processing

Presenter
Presentation Notes
Processing is a coding environment. In other words, it invented its own particular universe, and this is a universe where there already is concepts of a screen and colors and how to draw things on the screen. Not a bad starting point!

[demo the ‘Hue’ example in Processing if you want]

Processing

Processing consists of a programming language
built on Java and an IDE (Integrated Development
Environment).

It is specialized for visual design, drawing, and arts
applications. It is also designed for teaching.

Processing has lots of built-in functions and
variables for drawing on a canvas.

set up() {

}

dr a w() {

}

Program Execution

In Processing, s et up() runs
one time.

After that, dr a w() repeats
endlessly, until you stop the
program.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

set up() {
/ / c a nv a s s i z e
s i z e(800, 800) ;
/ / ba c k gr ound c ol or
ba c k gr ound(0) ;

}

dr a w() {

}

Program Anatomy

In s et up() , you’ll put things
like canvas size and
background color.

In draw, you’ll put actions that
you want to happen repeatedly.
We’ll add these in a minute.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

voi d set up() {
/ / c a nv a s s i z e
s i z e(800, 800) ;
/ / ba c k gr ound c ol or
ba c k gr ound(0) ;

}

v oi d dr a w() {

}

Program Anatomy

Add comments by putting two
slashes at the beginning of a line.

The program doesn’t run these:
they are for humans to read
and understand.

Use comments often!

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

el l i pse(x, y, wi dt h, hei ght) ;

r ec t (x , y , wi dt h, hei ght) ;

l i ne(x 1, y 1, x 2, y 2) ;

Drawing functions

Processing has built-in
functions for drawing, graphics,
and creative coding.

You can find information about
what Processing can do and
how to use functions in the
documentation.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

https://processing.org/reference/

el l i pse(x , y , wi dt h, hei ght) ;

r ec t (x , y , wi dt h, hei ght) ;

l i ne(x 1, y 1, x 2, y 2) ;

Anatomy of functions

Just as in the previous
examples, the external part of
these functions describes what
they do.

Semicolons indicate the end of
the line. Don’t forget them!

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

el l i pse(x , y , wi dt h, hei ght) ;

r ec t (x , y , wi dt h, hei ght) ;

l i ne(x 1, y 1, x 2, y 2) ;

Anatomy of functions

Inside the parenthesis, you
specify parameters for the
shapes you’re drawing.

Look in the documentation to
learn about the parameters
for a specific function.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

https://processing.org/reference/

The Processing Canvas

What parameters should you use?

It helps to know something about
the drawing space in Processing.

Processing’s canvas uses x, y
coordinates starting from the
top left corner.

Presenter
Presentation Notes
One of the primary reasons we are using Processing is that it gives us a canvas that we can draw to with functions like background() and rect(). But what is its canvas?

When we see a painting on a canvas in real life, we don’t think about it numerically. But numerically is how the canvas must exist on the computer. So how is the canvas conceived on a computer?

Open and run sketch 2: Demonstrate coordinate system, color, and shape.

The Processing Canvas

Processing represents images
in pixels.

Each image in Processing is a
grid, with numbers representing
the color value at each
coordinate.

When you specify
measurements, like square
width, you’re referencing pixels.

Presenter
Presentation Notes
To start, the canvas is a grid of pixels. Pixels are picture elements -- the very small squares one can see when getting nose-close to their screen or when zooming in in Photoshop. We define the size with the size() function, giving width and height. We define coordinates from 0,0 in the upper left to width, height in the lower right. Inside the computer, the canvas is a series of numbers, each one representing the color value at each coordinate.

The Processing Canvas

Processing can represent color
in a few different ways.

RGB: Represented with three
values, 0-255, and a fourth
for transparency.

Grayscale: One value, 0-255.

(r : 255, g: 0, b: 0)

(r : 0, g: 0, b: 255)(r : 0, g: 255, b: 0)

(r : 0, g: 255, b: 255)

(r : 255, g: 0, b: 255)

(r : 255, g: 255, b: 0)

(r : 255,
g: 255,
b: 255)

Presenter
Presentation Notes
So far we translated the plane and coordinates of a canvas to a computer. Next we will consider color. We each can perceive different quantities of color, usually somewhere in the range of 16.7 M. Our eyes have cones that perceive (roughly) red, green, and blue. Our screens are backlit by a white light and have little liquid crystals that twist to filter light letting certain amounts of red, green, and blue through. Likewise, we tend to conceive of color on a computer as a 24-bit number - 8 bits apiece for red, green, and blue. 256^3 is, you guessed it, about 16.7M

voi d set up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
e l l i ps e(100, 100, 50, 50) ;

}

Bringing it Together

Let’s do some live coding!
You can follow along by
downloading and opening
Day01_exercise01.pde
from Drive.

We’ll add parameters to our
shape functions to create
some images.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

i nt x = 100;
i nt y = 100;

i nt c i r c Wi dt h = 70;
i nt c i r c Hei ght = 70;

v oi d s et up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
el l i ps e(x , y , c i r c Wi dt h,

c i r c Hei ght) ;

}

Live Code

Next, we’ll create named
variables to store our
parameter information.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

i nt x = 100;
i nt y = 100;

i nt c i r c Wi dt h = 70;
i nt c i r c Hei ght = 70;

c ol or c i r c Col or = c ol or (255, 0, 0) ;

v oi d s et up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
f i l l (c i r c Col or) ;

e l l i ps e(x , y , c i r c Wi dt h,
c i r c Hei ght) ;

}

Live Code

We’ll add some color to the
circle by creating a color
variable, and setting the color.

In Processing, you can set a fill
color and an stroke (outline)
color.

There is a built in color
function that accepts RGB or
other color information.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

Exercise

Let’s get off screen!

Take a sheet of paper and
draw out the code step by step.

The canvas size is already
set for you.

Loop through dr aw() five
times.

i nt x = 5;
i nt y = 5;

i nt r ec t Wi dt h = 2;
i nt r ec t Hei ght = 2;

c ol or r ec t Col or = c ol or (0) ;

v oi d s et up() {
s i z e(20, 20) ;
ba c k gr ound(255) ;

}

v oi d dr a w() {
f i l l (r ec t Col or) ;

r ec t (x , y , r ec t Wi dt h,
r ec t Hei ght) ;

y = y +1
}

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

Exercise

Let’s get off screen!

What does your sketch look like?

i nt x = 5;
i nt y = 5;

i nt r ec t Wi dt h = 2;
i nt r ec t Hei ght = 2;

c ol or r ec t Col or = c ol or (0) ;

v oi d s et up() {
s i z e(20, 20) ;
ba c k gr ound(255) ;

}

v oi d dr a w() {
f i l l (r ec t Col or) ;

r ec t (x , y , r ec t Wi dt h,
r ec t Hei ght) ;

y = y +1
}

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

i nt x = 100;
i nt y = 100;

i nt c i r c Wi dt h = 70;
i nt c i r c Hei ght = 70;

c ol or c i r c Col or = c ol or (255, 0, 0) ;

v oi d s et up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
f i l l (c i r c Col or) ;

e l l i ps e(x , y , c i r c Wi dt h,
c i r c Hei ght) ;

y = y +1;
}

Live Code

Because dr a w() repeats
constantly, we can create
change and movement using
math.

When we add 1 to y with each
loop, the dot’s y position slowly
increases, so the dot slides
down the screen.

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

i nt x = 100;
i nt y = 100;

i nt c i r c Wi dt h = 70;
i nt c i r c Hei ght = 70;

c ol or c i r c Col or = c ol or (255, 0, 0) ;

v oi d s et up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
f i l l (c i r c Col or) ;

e l l i ps e(x , y , c i r c Wi dt h,
c i r c Hei ght) ;

y = y +1;
}

Live Code

Because dr a w() repeats
constantly, we can create change
and movement using math.

When we add y = y+1, the dot
begins to slide down the canvas.

Why does it leave a trail?

Why might you want to put
y = y +1 at the bottom of the
function?

Presenter
Presentation Notes
Have students split into pairs and discuss.

I’ll be using worksheets on graph paper: students will go through setup, and then draw the squares.

i nt x = 100;
i nt y = 100;

i nt c i r c Wi dt h = 70;
i nt c i r c Hei ght = 70;

c ol or c i r c Col or = c ol or (255, 0, 0) ;

v oi d s et up() {
s i z e(800, 800) ;
ba c k gr ound(0) ;

}

v oi d dr a w() {
ba c k gr ound(0) ;

f i l l (c i r c Col or) ;
e l l i ps e(x , y , c i r c Wi dt h,

c i r c Hei ght) ;
y = y +1;

}

Live Code

The dot leaves a trail because
we’ve only drawn the background
once, during setup.

Let’s re-draw the background at
the beginning of each draw loop.

What would happen if we put
ba c k gr ound(0) at the end of
the loop?

Presenter
Presentation Notes
[show actual Processing on your computer with FirstSketch open]

Now, looking at this example, how do you as a human parse it? How does the computer parse it? Well, this is particular to Processing, but in Processing, the computer executes the code in the setup() function ONCE, then executes the draw() function EVERY FRAME. Remember functions? Here are some real ones.

Setup runs once: use it to establish the basic “scene” of your sketch.

Take the metaphor of a play: when the curtains open, what should be on stage? For example, you’ll want to set the canvas size and the background color.

Let’s look at this more closely: run example sketches.

After the setup function runs, the draw function repeats over and over again, endlessly. You can construct a sketch so that nothing changes, like a still life, or you can construct a sketch so that things DO change, like an animation, or game.

Wrapping up

Take a minute to explore Processing.

Draw a rectangle.

Then draw a line.

Make your rectangle change
color as the sketch runs.

Make one point of your line
move as the sketch runs.

el l i pse(x , y , wi dt h, hei ght) ;

r ec t (x , y , wi dt h, hei ght) ;

l i ne(x 1, y 1, x 2, y 2) ;

Presenter
Presentation Notes
Have students split into pairs and discuss.

I’ll be using worksheets on graph paper: students will go through setup, and then draw the squares.

Homework

● Research some artists or designers working with code.
Bring in an example of work you’re interested in!

● Pseudocode: think of something simple you would like
to draw in Processing. Decompose it and write the
pseudocode for it.

● Bonus: actually program it (or try)
○ Look at the docs: https://processing.org/reference/
○ Good places to start: background(), fill(), rect(), triangle(), ellipse(),

line()

https://processing.org/reference/

Resources

https://processing.org/tutorials/

Dan Schiffman: The Coding Train

https://www.amazon.com/Learning-Processing-Second-Programming-Interaction

Presenter
Presentation Notes
Let’s add more resources!

https://processing.org/tutorials/
https://www.youtube.com/user/shiffman/playlists?shelf_id=2&sort=dd&view=50
https://www.amazon.com/Learning-Processing-Second-Programming-Interaction

	Code
Section
	Introductions		Instructor background
Student introductions

Creative Code	What is code?
Problem decomposition
Learning languages
BREAK

Processing		Anatomy of a sketch
Drawing with Processing
Live code exercises	
	Why do we code?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	What is code?
	Translating Instructions
For a Computer
	What computers do:
Store information as 1s and 0s and
perform math and logic operations on it
	Intermediate Languages and Libraries
Expand the Computer’s Vocabulary
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Variables
	Types of Variables

In groups of two or three, define one of these. Write your definitions on the board.`
	Types of Variables

These are some, but not all, primitive types.
	Using variables

Use println() to receive values back in the console.

	Functions
	Function example

This example describes a series of materials and actions to accomplish an overall goal: putting on a shoe.

You’ll need some specific materials:
a shoe, and a foot.
	Function example

This example describes a series of inputs and actions to accomplish an overall goal: putting on a shoe.

You’ll need to execute some specific actions: picking up your foot, etc.
	Problem Decomposition
	Peanut Butter &
Jelly Sandwich
	Recipe Breakdown
	Pseudocode 1

Pseudocode is useful for breaking down and understanding a complex task: translate code to “language”
	Pseudocode 2

Pseudocode is useful for breaking down and understanding a complex task.
	With a partner, write out the instructions
for making a sandwich or another food.

Swap instructions with another team.

 Think through the instructions literally and
 specifically: What happens?
	Break
Return in 10 minutes
	Processing
	Processing
	setup(){

}

draw(){

}
	setup(){
	//canvas size
 	size(800,800);
	//background color
	background(0);
}

draw(){

}
	void setup(){
	//canvas size
 	size(800,800);
	//background color
	background(0);
}

void draw(){

}
	ellipse(x, y, width, height);
rect(x, y, width, height);
line(x1, y1, x2, y2);
	ellipse(x, y, width, height);
rect(x, y, width, height);
line(x1, y1, x2, y2);
	ellipse(x, y, width, height);
rect(x, y, width, height);
line(x1, y1, x2, y2);
	The Processing Canvas

What parameters should you use?

It helps to know something about the drawing space in Processing.

Processing’s canvas uses x, y coordinates starting from the
top left corner.

	The Processing Canvas

Processing represents images
in pixels.

Each image in Processing is a grid, with numbers representing the color value at each coordinate.

When you specify measurements, like square
width, you’re referencing pixels.

	The Processing Canvas

Processing can represent color in a few different ways.

RGB: Represented with three values, 0-255, and a fourth
for transparency.

Grayscale: One value, 0-255.

	void setup(){
 	size(800,800);
	background(0);
}

void draw(){
	ellipse(100, 100, 50, 50);

}
	int x = 100;
int y = 100;

int circWidth = 70;
int circHeight = 70;

void setup(){
 	size(800,800);
	background(0);
}

void draw(){
ellipse(x, y, circWidth, 			circHeight);

}
	int x = 100;
int y = 100;

int circWidth = 70;
int circHeight = 70;

color circColor = color(255,0,0);

void setup(){
 	size(800,800);
	background(0);
}

void draw(){
	fill(circColor);
ellipse(x, y, circWidth, 			circHeight);
}
	Exercise

Let’s get off screen!

Take a sheet of paper and
draw out the code step by step.

The canvas size is already
set for you.

Loop through draw() five times.

	Exercise

Let’s get off screen!

What does your sketch look like?

	int x = 100;
int y = 100;

int circWidth = 70;
int circHeight = 70;

color circColor = color(255,0,0);

void setup(){
 	size(800,800);
	background(0);
}

void draw(){
	fill(circColor);
ellipse(x, y, circWidth, 			circHeight);
y= y+1;
}
	int x = 100;
int y = 100;

int circWidth = 70;
int circHeight = 70;

color circColor = color(255,0,0);

void setup(){
 	size(800,800);
	background(0);
}

void draw(){
	fill(circColor);
ellipse(x, y, circWidth, 			circHeight);
y= y+1;
}
	int x = 100;
int y = 100;

int circWidth = 70;
int circHeight = 70;

color circColor = color(255,0,0);

void setup(){
 	size(800,800);
	background(0);
}

void draw(){
background(0);
	fill(circColor);
ellipse(x, y, circWidth, 			circHeight);
y= y+1;
}
	Wrapping up

Take a minute to explore Processing.

Draw a rectangle.

Then draw a line.

Make your rectangle change
color as the sketch runs.

Make one point of your line
move as the sketch runs.

	Homework
	Resources

