

Proteins are specified by their amino acid sequence.

- Polypeptide backbone with AA side chains
- Bond angle restricted, weak noncovalent bond: H+, electrostatic, van der Waals determine final 3D shape
- Nonpolar (hydrophobic) side chains (Leu Phe Trp Val) cluster together interior to H+ water
- Polar (hydrophilic) side chains (Asp- Arg+ His+ Gln polar) H+ bond outside, backbone interact

	Asp	D	negative	Alanine	Ala	A	nonpolar
Aspartic acid Glutamic acid	Glu	E	negative	Glycine	Gly	G	nonpolar
Arginine	Arg	R	positive	Valine	Val	v	nonpolar
Lysine	Lys	K	positive	Leucine	Leu	Ĺ	nonpolar
Histidine	His	н	positive	Isoleucine	lle	ī	nonpolar
Asparagine	Asn	N	uncharged polar	Proline	Pro	P	nonpolar
Glutamine	Gln	Q	uncharged polar	Phenylalanine	Phe	F	nonpolar
Serine	Ser	S	uncharged polar	Methionine	Met	M	nonpolar
Threonine	Thr	Т	uncharged polar	Tryptophan	Trp	W	nonpolar
Tyrosine	Tyr	Υ	uncharged polar	Cysteine	Cys	C	nonpolar

FAMILIES OF AMINO ACIDS

The common amino acids are grouped according to whether their side chains are

acidic basic uncharged polar nonpolar

These 20 amino acids are given both three-letter and one-letter abbreviations.

Thus: alanine = Ala = A

Panel 3-1 (Part 4) Molecular Biology of the Cell 6e (♥ Garland Science 2015)

Proteins fold into unique 3D conformations of lowest energy.

- Study by denaturing noncovalent bonds (urea), allow to renature from flexible chain
- Conformation altered if interact with cell mol
- Chaperones: prevent hydrophobic aggregates making folding more reliable, assist folding
- SH2 (GTGA domains) 100AA backbone, ribbon, wire, space-filling models

Team work.

Which of the following pairs of amino acid residues would you expect to form ionic bonds?

- A. Glutamic acid and glutamine
- B. Arginine and lysine
- C. Tryptophan and tyrosine
- D. Tyrosine and glutamine
- E. Lysine and glutamic acid

Which of the following stretches of amino acid residues would you expect to find in the interior of protein molecules?

- A. Ala-Val-Leu-Ile-Trp
- B. Ala-Asp-Asp-Tyr-Arg
- C. Phe-Glu-Gln-Glu-Asn
- D. Gly-Tyr-His-Arg-His
- E. Gly-Lys-Ser-Pro-Thr

ay LC | ray

rayluo.3owl.com

| rluo@aoni.waseda.jp

WASEDA UNIVERSITY | IPSE

Proteins form common patterns (alpha helix, beta sheet) by backbone H bond.

- Alpha helix: keratin in skin hair, N-H (up) H bond to C=O (down) 4 away, turn every 3.6, C end part neg, N part pos, membrane proteins inside H bond each other, outside nonpolar
- Beta sheet: fibroin in silk, H bond between diff chains, R alternate up down, protein core rigid
- Beta sheet run in parallel (same orientation) or anti-parallel (fold back on itself) directions
- Coiled coil alpha helix 2-3 chains, nonpolar on one side inward so twist around each other

Proteins are characterized by four (plus one) levels of structure.

- Primary structure: AA sequence
- Secondary structure: alpha helix, beta sheet
- Tertiary structure: 3D peptide organization
- Quaternary structure: multiple peptide chains
- Domains: part of chain into stable modules,
 e.g. Src Kinase SH2 SH3 regulate C-term kinase
- 20ⁿ possible seq but evolution selects for only 1 in a billion for its stable structure

Protein diversity result from reuse of same modules as homologs.

- Families of protein from duplicated mutations
- Diff AA seq (25% same) still similar structure due to small number of characteristic shapes
- Pattern matches in signature seq allow identification with proteins of known function
- Domain shuffling forms new proteins from existing motifs, binding sites mutated for diff ligands, N-C terms at opposite or same ends

Diversity of protein structures allow for adaptability.

- Half of domains shared between all organisms only 5% of 2-domain combos shared ev recent
- · Humans: similar genes vastly shuffled domains
- Binding sites noncovalent interactions with other polypeptides lead to multi-chain proteins
- Repeat helical filaments common, e.g. actin
- Fibrous proteins span large distance in extracellular matrix, e.g. collagen triple helix
- Unstructured chains allow stretch, e.g. elastin

Protein assemblies are formed by various means.

- Disulfide bonds (SH cysteine) cross-links proteins together in extracellular environ only, reducing (provide electrons) to separate
- Protein subunits assemblies, e.g. icosohedral viral capsid
- Self assembly: tobacco mosaic virus, ribosome
- Irreversibility: cannot self assemble after proteolytic cleavage, mitochondria

Team work.

Protein secondary structure elements such as α helices and β sheets constitute the major regular folding patterns in proteins. With regard to these elements, ...

- A. the folding patterns result from hydrogen-bonding between the N–H and C=O groups in the
 polypeptide backbone.
- B. a certain short amino acid sequence always adopts the same secondary structure.
- C. hydrogen-bonding between the amino acid side chains defines the type of secondary structure.
- D. only a few specific amino acid sequences can adopt these repetitive structures.
- E. All of the above.

You have purified a multisubunit extracellular protein that has several interchain disulfide bonds. Which of the following chemicals would you add to your purified protein mixture if you wanted to eliminate the disulfide bonds?

- A. NaCl, a salt
- B. DTT, a reducing agent
- C. H_2O_2 , an oxidizing reagent
- D. SDS, an ionic detergent and denaturing agent
- E. Tris, a buffering agent

ray LC

rayluo.3owl.com

| rluo@aoni.waseda.jp

WASEDA UNIVERSITY | IPSE

SE