

Nervous systems originated from systems of sensory and motor neurons.

- Sea jelly nerve nets control contraction/expan.
- Sea star radial nerves for each arm contracts, connected to central nerve ring.
- Central nervous system integrate at anterior end & spine, peripheral system nerves ganglia.
- Glial cells (non-neurons) protect and nourish neurons, e.g. Schwann cells produce myelin sheats surrounding axons in PNS for speed.

ray LC

rluo@aoni.waseda.jp

WASEDA UNIVERSITY | SILS

ILS 🖣

Vertebrate nervous systems are grouped into circuits.

- Cavity of embryonic nerve cord becomes central canal of spinal cord and brain ventricles, filled with cerebrospinal fluid.
- Gray matter: neuron cell bodies.
- White matter: axon bundles myelinated, exterior in periphery, interior in CNS for region signaling.
- Spinal cord communicates CNS and PNS, but also indep in reflexes (bypassing CNS).
- Knee jerk reflex function at only spinal cord level.

ray LC

rluo@aoni.waseda.jp

Peripheral nervous system consists of motor and autonomic systems.

- Afferent: PNS to CNS, efferent: CNS to PNS
- PNS motor system: signal to skeletal muscles
- PNS autonomic: involuntary, cardiac and smooth muscles, enteric digestive glands
- PNS autonomic sympathetic: arousal, digestion down, glucose conv, just outside spinal cord ganglia, post ganglia norephinephrine
- PNS autonomic parasympathetic: rest digest, glycogen prod, sex functions up along symp, base of brain to ganglia near organ, post ganglia ACh

ray LC

rluo@aoni.waseda.jp

Regional specific components of evolved brain structures.

- Forebrain: complex processing, midbrain: routing inputs, hindbrain: involuntary activity movement
- Forebrain got bigger in evolution, region specific
- Human cerebral cortex: left control right, corpus callosum cross-over, learning perception etc
- Cerebellum: error check move, eye-hand coord
- Diencephalon: thalamus relay sensory info, hypothalamus hunger thirst, body temperature, bio clock, pituitary control, pineal gland: melatonin CSF
- Brainstem: pons and medulla, relay, breathing, heart, swallowing vital functions, cross-over, vis reflex

ray LC

rluo@aoni.waseda.jp

Sleep, arousal, and circadian rhythms are regulated by midbrain control.

- Sleep: recording EEG waves, evidence for consolidation replay, midbrain reticular formation control REM rapid eye move dream filter input
- Dolphin: sleep one hemisphere at a time
- Biological clock sync to light and dark: hypothalamus
- Hypothalamic suprachiasmatic nucleus SCN transplant b/t 20 and 24 hr hamster strains -SCN as pacemaker

ray LC

rluo@aoni.waseda.jp

Emotions rely on interplay within limbic system: amygdala, hippocampus

- Image followed by shock lead to autonomic arousal heart rate sweating, but amygdala damage -> no arousal but can recall image
- fMRI of human tracks change in local oxygen level, listen to happy or sad music: happy -> nucleus accumbens activated, sad -> amygdala

ray LC

rluo@aoni.waseda.jp

WASEDA UNIVERSITY | SILS

s (

Team activity

Myelinated neurons are especially abundant in the _____.

- A) white matter of the brain and the gray matter of the spinal cord
- B) white matter in the brain and the white matter in the spinal cord
- C) gray matter of the brain and the gray matter of the spinal cord
- D) gray matter of the brain and the white matter of the spinal cord

If a patient has an injury in the brain stem, which of the following would be observed?

- A) an inability to regulate body temperature
- B) an inability to regulate heart function
- C) auditory hallucinations
- D) visual hallucinations

ray LC

rluo@aoni.waseda.jp

Cerebral cortex consists of sensory, association, and motor areas.

- Visual auditory somatosensory receptors ->
 thalamus -> primary sensory area (particular
 feature) -> association area (recognition faces) ->
 prefrontal (action planning) -> motor cortex ->
 brainstem -> spinal cord -> motor neurons
- Topographical organization in sensory and motor cortices, proportional to amount of processing needed for that body part
- Broca's area damage: can understand not speak,
 Wernicke's damage: can't comprehend can talk

ray LC

rluo@aoni.waseda.jp

- Left hemisphere: language, logic, math
- Right hemisphere: recognition, spatial, pattern
- Split brain severing of corpus callosum: cannot read word in left visual field since info cannot go from right hemisphere to language area
- Frontal lobe: Phineas Gage explosion caused iron rod behind left eye recovered, detached personality erratic behavior, no exec control
- Evolution: unconvoluted pallium in birds and convoluted cortex in humans from same ancestor? Birds can remember, tools, abstract

ray LC

rluo@aoni.waseda.jp

WASEDA UNIVERSITY | SILS

Skull of Phineas Gage, railroad construction crew

Learning and memory are formed by changes in cell, synaptic connections.

- Competition for growth factors: **cell** death for half of cells who don't reach proper location.
- Competition for right connections: half of synapses for a cell are eliminated in develop.
- Neuronal plasticity: activity of cell -> remodel, fire together -> wire together, autism defect.
- Hippocampus short term memory, cortex long term memory, damage to hippocampus: can recall past but not form new memories.

ray LC

rluo@aoni.waseda.jp

Changes in synpatic strength at the hippocampus via LTP.

- More connections with existing knowledge the new knowledge is, easier it's to remember
- New skill: new connects, new fact: use existing
- Long term potentiation in hippocampus: high freq presyn firing coincides with postsyn depolarization -> unblock NMDAR -> insertion of AMPAR glutamate receptors -> bigger postsyn potential with the usual presyn stim

ray LC

rluo@aoni.waseda.jp

WASEDA UNIVERSITY | SILS

win and

Nervous system disorders can affect anyone.

- · Family studies to identify genetic factors
- Schizophrenia: disordered reality, hallucinates, delusions, dopamine block alleviates symptom
- Depression: major depressive, bipolar manic phase suicidal phase, Prozac amines up
- Addiction: manipulate VTA dopamine pathway
- Alzheimer's: can't function can't recognize, accumulate beta amyloid plagues that kill cells nearby, neurofibrillary tau tangles (early onset)
- Parkinson's: tremors rigid shuffling, mitochondria genetic defect?, L-Dopa and deep brain stim

ray LC

rluo@aoni.waseda.jp

Team activity

The motor cortex is part of the

- A) spinal cord
- B) cerebrum
- C) medulla oblongata
- D) cerebellum

Exercise and emergency reactions include _

- A) decreased activity in the sympathetic, and increased activity in the parasympathetic divisions
- B) increased activity in all parts of the peripheral nervous system
- C) increased activity in the enteric nervous system
- D) increased activity in the sympathetic, and decreased activity in the parasympathetic divisions

ray LC

rluo@aoni.waseda.jp

