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1 Background and Objectives

The purpose of this study focuses on the average price of coffee served in licensed

establishments across the area considered as North West Los Angeles (NWLA). Coffee is

a product of high demand and its consumption, a popular activity for many. LA City’s

community seems to view it as a necessity, commodity and leisure activity. Assuming its

significant position in LA’s marketplace, we wish to determine the average price of coffee

and to apply this knowledge to real life choices. In other words, as students living in our

chosen area, we hope to see how “expensive” or “inexpensive” an establishment in NWLA

prices their coffee relative to the entire region.

2 Population and Multi-Stage Sampling

We determined that Multi-Stage sampling would be appropriate in our project since

NWLA is partitioned into several zip codes. These zip codes are chosen to be the primary

units since they best define the different areas of NWLA. Since no one primary unit can

be representative of the entire region, multi-stage sampling not cluster sampling should be

implemented here. Also, zip codes have different economic backgrounds and tax regula-

tions which would make the difference in coffee prices between zip codes much different

than within each zip codes.

Using a Thomas Guide map with zip code borders, we found which zip codes fulfilled

our locations of interest. Then we contacted the LA City Tax office and received the

records of all eateries in the specific zip codes. Each eatery is required to register with

the government for tax purposes; therefore, this gave us the most complete list of possible
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units for the analysis. A map of the chosen locations can be seen below.

Notice that 90073 is the Veteran’s Hospital and will not have any coffee shops.
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The obtained report consisted of 756 eateries in PDF format. We, then, parsed the data

using Python to aggregate a list of names, addresses and zip codes of each eatery. From

here, we filtered through the list by researching online, phone calls or visits to each eatery

to verify whether it falls under our description of a coffee establishment (i.e. café, coffee-

house, bakery, doughnut shop excluding all waited-on restaurants). The adjusted total τ

consisted of 102 coffee-shop type places. Once we had a complete count, we divided the

population into primary units / zip codes N . Each primary unit contains a total number

of secondary units Mi as shown below:

Zip Codes 90024 90025 90035 90048 90049 90064 90067 90069 90073 90077

Units (Mi) 22 14 9 17 8 16 13 0 0 3

Method 1: From the N = 8 zip codes with coffee shops, we used simple random sam-

ple (SRS) without replacement to get n = 5 distinct primary units (PUs). We planned

on using a total of
∑n

i=1 mi = 35 total samples, because this is usually the sample size

required for normality in basic SRS designs. This assumption needs to be checked when

fitting a model in the future. Next, we use proportional allocation to decide how many

samples to obtain at each PU. The idea is that we want to sample larger PUs more often.

The selection of secondary units (SUs) still procedes by without replacement SRS. What

we are doing here is assuming that the PUs are set given the primary stage selection, much

like strata in stratified random sampling. Given these PUs, we allocate the mi = 35Mi
M pro-

portionally amongst the PUs that were selected. The Mi,M are known from the complete

data set. We used proportional allocation because the variances of the population needed

for optimal allocation were not available. This is two-stage design with SRS at each stage

(we excluded primary units which had no coffee shops-90069 and 90073). Prices of a 12oz
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cup of house coffee and a 12oz cup of café latte are:

Zip Codes 90024 90025 90035 90048 90049 90064 90067 90069 90073 90077

Units (Mi) 22 14 9 17 8 16 13 0 0 3

Sample (mi) 10 6 4 8 X 7 X X 0 X

Method 2: We also wanted to compare the allocation strategy in method 1 with a prob-

ability proportional to size (PPS) sampling of PUs, followed by SRS of the selected PU.

Thus the selection of the PUs procedes by the Hansen-Hurwitz method, with pi = Mi
M . In

this strategy, we take 35 independent samples of PUs with replacement using proportional

to size selection. Then we take a single random sample from the PU selected. The hope

is that we reduce the variance of the estimator within the PU by using an appropriate

number of samples for larger PUs. Note that this approach differs from method 1 in that

all PUs are equally represented across the two stages.

We first generate a random number uniformly from 0 to
∑N

i=1 Mi = 102. Then we

assign PUi using the cumulative intervals in the sum. For example, if the random number

is greater than M2 and less than M3, then we select PU3 (90035). Then we choose one

sample at random from that zip code. Note that repeats are possible in this design, as seen

in our data. We wanted to compare the PPS approach with the proportional allocation

approach in the SRS design using the same number of total samples. We expect the PPS

estimator to work well when the total ŷi for each PUi is proportional to Mi. The Hansen-

Hurwitz estimator is known to be unbiased for this with-replacement scheme (Thompson,

2002). Note that the cost and sample size formulas from Thompson cannot be used in this

case because the mis are not constant, and the variances are not known.
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Zip Codes 90024 90025 90035 90048 90049 90064 90067 90069 90073 90077

Units (Mi) 22 14 9 17 8 16 13 0 0 3

Sample (mi) 8 4 7 4 2 6 3 0 0 1

The data for both methods are attached in Figures 1 and 3 in Appendix. The plots

of the data is attached in Figure 2 and 4 of the Appendix.

3 Analysis and Estimation

When looking at the plot for the first method (Figure 2), the sample shows that the means

and medians are very close with a slight outlier in 90064. We want to estimate µ and

determine its standard error:

Unbiased Estimator:

Using SRS at both stages and proportional allocation of SUs, we find that the unbiased

estimator gives a result of τ̂ = $200.32 ± 20.26, and µ̂ = $1.626 ± 0.16. The formulas are

as follows.

µ̂ = τ̂ /M

M = 102

τ̂ = Mi
mi

∑
j∈si

yij

var(µ̂) = var(τ̂)/M2

ˆvar(τ̂) = N(N − n)σ2
µ

n + N
n

∑N
i=1 Mi(Mi −mi)

σ2
i

mi

Results:

τ̂ = 200.32

ˆvar(τ̂) = 410.59

se = 20.26

µ̂ = $1.626
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ˆvar(µ̂) = .027

se = .164

Ratio Estimator:

The ratio estimator gives a result of τ̂r = $200.32 ± 6.02, and µ̂r = $1.626 ± 0.049. We

suspect that the standard error is so low because the mi correlate with the yi, because our

proportional allocation assigns more units to the bigger PUs, leading to a bigger sum over

SUs in those PUs. The formulas are as follows.

τ̂r = r ×M , r =
P

i∈s ŷiP
i∈s Mi

µ̂r = τ̂r
M = r

ˆvar(τ̂r) = N(N − n) σ̂2
r

n + N
n

∑
i∈s Mi(Mi −mi)

s2
i

mi
where σ̂2

r = 1
n−1

∑
i∈s(ŷi − rMi)2

ˆvar(µ̂) = var(τ̂r)/M2

Results:

τ̂r = 200.32

ˆvar(τ̂r) = 36.29

se = 6.02

µ̂r = 1.626

ˆvar(µ̂) = .00239

se = .049

Here we see that the Ratio Estimator has a smaller standard error than the unbiased esti-

mator. This shows that there is a correlation between the Mi and the yi values.

When looking at the plot for the second method (Figure 4), the sample shows a lot more

variation between zip codes and more difference in means and medians. It shows that

prices for shops in the 90024 and 90035 area codes appear to have large variance. However,

as the scatter plot shows, much of the variance may be explained by a single sample in
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90024 that netted $3. The means look to be highest for shops in 90064 and 90049, but we

don’t have enough samples to determine this without fitting a model.

Probability Proportional to Size:

Using PPS sampling of PUs and SRS of SUs, we used the Hansen-Hurwitz estimator to

find τ̂p = $161.69± 6.08, and µ̂p = $1.59± 0.060. Note that this is a different sample from

the above, although some of the same units are chosen after randomization based on what

was sampled before. That is, we generate a random number to select randomly from each

PU, but the SU selected chosen is based on an assignment of the samples we have, unless a

new unit is needed, in which case we called (this happened five times total, three of them

for the 90067 code, which didn’t appear in the first method.) The PPS estimator also has

low variance, due to the proportionality between pi and yi. The formulas are as follows.

pi = Mi/M pi = .22, .16, .14, .09, .16

τ̂p = 1
n

∑
i∈s

yi
pi

= M
n

∑
i∈s

yi
Mi

ˆvar(τ̂p) = 1
n(n−1)

∑
i∈s(

yi
pi
− τ̂p)2 = M2

n(n−1)

∑
i∈s Mi(ȳi − µ̂p)2

µ̂p = τ̂p

M

var(µ̂p) = ˆvar(τ̂p)
M2

τ̂p = 161.68

ˆvar(τ̂)p = 36.94

se = 6.08

µ̂p = 1.59

se = .060

Despite the larger difference in means and medians, the standard error for PPS is still

smaller than the unbiased estimator. Both method results show that using a proportional

method is more appropriate in the design than SRS. Both the Ratio Estimator for the

SRS design and Hansen-Hurwitz estimator for the PPS design appear to have low vari-
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ance. They work because they take advantage of the proportionality of the sum of values

in each PU to the number of samples either allocated or selected in that PU. The PPS

design samples all the zip codes, however, while the SRS design only samples an arbitrary

number of PUs specified by the design. The slightly larger variance associated with the

PPS estimator may reflect this sampling of two extra PUs. Purely based on design, the

PPS estimator has greater intuitive appeal, because PUs are selected based on size, rather

than having the size determined post sampling at the first stage. The purely SRS design

assumes that the PUs determined are equal at the first stage before allocating at the second

stage, which is not a good assumption in our case. On the other hand, the PPS design

implements proportional to size sampling as opposed to allocation, taking advantage of the

known structure of all PUs, not just the ones selected in the first stage.

4 Conclusion

The estimated average price of a 12 oz cup of regular coffee in NWLA is according to

the unbiased estimator with SRS of both PU and SU is $1.63. Also, the average price

is $1.59 when using the Probability Proportional to size method. We can see that the

estimates are not very different. In the first method, since we used proportional allocation

in determining our mi, the mi are correlated to the Mi. If we assume that zip codes affect

the price of coffee, then there is a correlation between the Mi and the yi values. As a

result, the mi are also correlated to the yi values; therefore the Ratio Estimator above has

a smaller standard error compared to the unbiased estimator. In the second method, the

result is similar, with a mean of µ̂p = $1.59 ± 0.060. The design, however, has greater

intuitive appeal, and requires one less parameter to be determined by the sampler, because

the number of PUs are not determined a priori. Moreover, the estimator variance is small

due to the proportionality of the sum of the prices in each zip code with the number of
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shops in each zip code used to determine pi. One possible improvement on PPS is to use

different numbers of samples in stage two to lower the cost of sampling. For example, if

we take 40 samples, all independently selecting a PU followed by a SRS of one sample

from the selected PU, then the cost is on the order of the 40 PU samples. If instead, we

sample only 10 PUs, followed by SRS without replacement of 4 SUs in each PU selected,

then the lower cost of the (more limited) second stage PU combined with the four fold

reduction in the number of PUs selected will reduce the cost substantially. This scheme is

still a PPS design, because pi = Mi
M still holds. However, it remains to be shown what the

estimator variance of this strategy would be, because it would likely have a higher between

PU variance but lower within PU variance.

When walking into a coffee shop, we can now compare the price of their 12 oz cup of

regular coffee to our estimated averages. The estimates can be used as a benchmark for

deciding whether that coffee shop suitably prices their coffee. This information is useful for

price sensitive customers. Finally, the entire analysis can be used for various other drinks

served in these establishments for other interested parties.

Some possible problems in our design are due to the subjectivity within our catego-

rization. Because we did a manual check of the eateries, the category of “coffee-type”

establishments is based on our opinion of what defines this category which may be differ-

ent from what others consider as such an establishment. We also discovered that areas such

as Beverly Hills and Pacific Palisades are considered part of this region but was excluded

because they are not in LA city and have different tax regulations. If we had included these

areas in our analysis, we believe that the data would be skewed due to prices being affected

by tax. Also, we assume that different zip code have different economic backgrounds but

the significance of these differences have yet to be determined.
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Appendix

Figure 1: Multi-Stage with SRS and Proportional Allocation
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Figure 2: Multi-Stage with SRS and Proportional Allocation
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Figure 3: Multi-Stage with Probability Proportional to Size
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Figure 4: Multi-Stage with Probability Proportional to Size
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