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Abstract

Tracking articulated figures in high dimensional state spaces require tractable
methods for inferring posterior distributions of joint locations, angles, and oc-
clusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient
sampling procedures for approximating probability distributions. We apply
MCMC to the domain of people tracking and investigate a general framework
for sample-approximation tracking based on the Particle Filter, MCMC, and
simulated annealing. A tutorial discussion of MCMC is provided.

1 Introduction

Tracking complex moving emsembles in noisy environments with highly quan-
tized video sequences produces difficult computational problems that cannot be
fixed simply by making the object or motion models more complex. Complicated
object models involve a greater number of state variables that parameterize the
object orientation or position. The high dimensionality of the state space makes
probabilistic inference for the posterior distribution of the object location or an-
gle intractable. Detailed motion models fail miserably when asked to track a
similar but different motion sequence. For example, built-in walking models for
tracking walking humans fail when the subject turns a corner [10].

Conventional approaches to visual tracking involves a sampling and resam-
pling procedure commonly known as Condensation or Particle Filtering [4]. Un-
like linear prediction algorithms like the Kalman Filter [5], Particle Filters do
not assume Gaussian transition and observation noise. Its problem lies in the
exponentially increasing number of particles needed for high dimensional noisy
problems.

Markov chain Monte Carlo (MCMC) is a set of techniques for efficient sam-
pling of probability distributions. We apply MCMC to the domain of people
tracking to construct better, more efficient approximations to the posterior dis-
tributions of states. We begin with a review of tracking as a probabilistic pre-
diction and inference problem. After discussing the Particle Filter, we move
on to MCMC methods, culminating in the hybrid Monte Carlo method that
was implemented. Finally, we describe each piece of the tracker as a Bayesian
filtering step and discuss extensions and future research directions.

2 Probabilistic foundation

Let St ∈ K be a vector of variables we want to track, e.g. torso position, joint
angle, and body orientation. K is the appropriate domain for each variable, e.g.
[0, π] for arm elbow angle and R3 for location of body centroid. In general, each
ith variable Si

t can be a vector in a vector space.
Our observed data at time t is a vector Dt. At any given time t we are given

the observations D0:t = (D0,D1, . . . ,Dt). We’re interested in the posterior
distribution p(St|D0:t) which assigns a probability to each configuration St = St.
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2.1 Bayesian filtering

We factor the posterior distribution by Bayes Rule [7],

p(St|D0:t) =
p(Dt|St,D0:t−1) p(St|D0:t−1)

p(Dt|D0:t−1)
= α p(Dt|St,D0:t−1) p(St|D0:t−1),

where p(Dt|D0:t−1) is the constant α−1 set after calculations to a value that
normalizes the distribution.

Next we make some assumptions about the observations to simplify our
problem. Given our current state, past observations should be independent of
present observations. For example, suppose your little brother puts an indeter-
minant number of coins into the piggy bank every week. Your state estimate
is the observed number of coins from the previous week. Then your observa-
tions this week is independence of past observations as long as your brother is
a capricious money saver. Note that in this case, the state is simply a record
of observations. In general, the state is a function of the observations, but the
independence relationship of the observations may still hold. This gives us a
factorization,

p(St|D0:t) = α p(Dt|St) p(St|D0:t−1), (1)

where p(Dt|St) is the likelihood function and p(St|D0:t−1) is the prediction dis-
tribution which represents current state estimates given the past observations
only. Equation (1) specifies the correction made to St given the data. It repre-
sents the control process of our dynamical system due, for example, to sensory
feedback and temporal corrections.

Marginalize over the previous state to get the prediction distribution (or,
a.k.a. the temporal prior),

p(St|D0:t−1) =
∫
St−1

p(St,St−1|D0:t−1)

=
∫
St−1

p(St|St−1,D0:t−1) p(St−1|D0:t−1).

Let us now make an assumption regarding our state description of the dynamical
system. In particular, we assume that the future state of the system is inde-
pendent of the past observations given the present state. That is, the present
state captures everything we need to know about to calculate the state proba-
bilities at the next time step. This is a first order Markov assumption applied
to Bayesian filtering. Note that the assumption has nothing to do with the un-
derlying physical process. Given a rich enough state description and accurate
sensor readings, we can always satisfy the Markov assumption to a sufficient
degree. Now the prediction is

p(St|D0:t−1) =
∫
St−1

p(St|St−1) p(St−1|D0:t−1), (2)
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where p(St|St−1) is the dynamic or transition probability and p(St−1|D0:t−1) is
the prior distribution, i.e. the posterior from the previous time step.

From (1) and (2), we get a recursive formulation of the posterior state distri-
bution that depends only on previous and current observations. Starting with
a flat initial prior that assigns uniform probability to every state configuration,
we propagate St−1 forward in time according to our dynamical model, examine
the probability of the new data given the propagated St, and calculate the new
posterior based on the on the temporal prior and the likelihood. The space
complexity of the general algorithm depends on the size of St

2.2 Sample approximation

The Monte Carlo principle approximates a probability distribution using a
weighted set of delta functions [8].

2.3 Particle Filtering

Kalman filtering [5]. Particle filtering of Isard and Blake [4].

3 Markov chain Monte Carlo

3.1 Gibbs sampling

Geman and Geman were the first to apply Gibbs sampling to an image restora-
tion problem [3].

3.2 Metropolis algorithm

Metropolis et al. used a symmetric proposal distribution [9].

3.3 Hybrid Monte Carlo

An auxiliary variable sampler samples from an augmented distribution and ob-
tains the desired sample approximation by marginalizing over unwanted vari-
ables. The most popular auxiliary variables algorithm is the hybrid Monte Carlo
filter first introduced in the thermal physics community by Duane [2]. Duane
et al. showed that the MCMC can be combined with the Metropolis test.

3.4 Simulated annealing

Kirkpatrick et al. first applied simulated annealing to problems in statistical
physics [6].
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4 Human tracker

Choo and Fleet built a people tracker based on hybrid Monte Carlo sampling
of the posterior [1].

4.1 Likelihood

4.2 Dynamics

4.3 Temporal prior

5 Results

6 Conclusions
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