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The Critical Role of the MV-22B Osprey in Future

Marine Corps Operations

by Daniel Tam

The MV-22B Osprey, a tilt-rotor cratt currently being developed for the LS. Ma-
rine Corps, promises revolutionary advantages over its helicopter cousins due to
a unique design. Its superior speed, range, and versatility will be vital to Marine
operations in the 21 century.

Fluid Flow in a Flute
by Cindy Wi

When in a concert, we are usually too over-
whelmed by the beauty of our favorite song
that we often forget about the science of musical
instruments. Learn more about the physics of a func-

tional flute and find out about the science benhind art.

Going Wireless with
Ultra-Wideband
by Nihar Gupta

Ultra-wideband technology opens up new

possibilities for the communications industry.
In this article, learn more about the technology
and limitations of ultra-wideband.
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Editorial Learning Categories Using
by Jonathar Tescl Semantic Priming in a Bayesian

Framework
] Current  Research by Ray Lo

Chirdy W The process of categorical [cmnmﬂ and an
effort to model it in machines is explored in

Biographies this article about current research into artificial in-
e ire s e ] telligence. Specifically, the results of using semantic priming

, I in a Bayesian Framework is analyzed and discussed.
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“se.man-tics n.

Meaning or the study of meaning
derived from morphemes, words,
and senfences.

“prim-ing n.

The process by which an earlier
encounter with a stimulus increases
the likelihood of that stimulus

or a related stimulus being
remembered af a later time.

Fis

—Huffman, Karen.
Psycholagy in Action, 61h Ed.

by Ray Luo

v »Human beings are capable of learning nouns with just a few examples and
almost no explicit feedback. But a simple explicit memory model cannot
- account for either the rapidity or the accuracy of learning. Thus, reliance on
an implicit memory model that accounts for the effects of past experiences
is necessary. One approach is to represent nouns as basic categories with

uncertain feature values. As more data are incorporated, the categories

become more and more like what the nouns represent in the real world.

Since categories are built up from experience, it is expected that physical
interaction will improve category acquisition. Current research suggests
. that implicit category comparisons (via semantic priming) model this
‘h\ physical interaction.

Much of the modeling ideas presented here are inspired by Schooler et.
al. [5]. As in Schooler et.al., rational analysis [1] is applied to the modeling
of results from psychological experiments. The REM model of Schooler
et. al. was an attempt to account for episodic retrieval via a model that

assumes that priming acts “alter the word’s lexical-semantic memory

representation” [5]. Justification for direct alteration of the representation
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is given in Schooler et. al. Most objec-
tions to Bayesian models point to the
lack of plausibility for the human mind
to perform probabilistic computations
during experimental tasks. As such,
this experiment will make simplifying
assumptions on the REM model by us-
ing simpler Bayesian methods that are
assumed to be within reach of the neu-
ral computation.

The experiment focused on animal
categories so as to simplify direct com-
parison with psychological experi-
ments. Ideas suggested here are
relevant for text categorization as well.
In particular, any domain that can be
decomposed into hierarchical catego-
ries can be modeled. The algorithm
uses a simple representation of features
and categories to facilitate comparison.
In a real-world application, Bayesian
network representations should be con-
structed for both basic and parent cat-
egories. A suggestion on how this can
be done is presented later, although the
implementation is only at an experi-
mental phase.

Assumptions

First, it is assumed that no percep-
tual errors are made during learning
and testing. There is no probability dis-
tribution associated with input animal
features for each example. The lack of
errors in perception does not, however,
imply that the input data is noiseless.
It is assumed that the distributions of
attributes of an animal are independent
and jointly Gaussian. Data are gener-
ated using normal distributions with
pre-determined means and variances
that reflect the attribute domain for each
animal. Noisy examples with random
features are also fed into the model pe-
riodically. The assumption suggests
that the model captures the only proba-
bilistic aspect of category learning.
Thus, the model itself (not the percep-
tual system) is responsible for handling
noisy data.

Second, only two levels of categories
are relevant to the task. The basic cat-

egories consist of ani-
mal types. In particu-
lar, data for ant, snail,
frog, cat, wolf, cow,
and whale were given
as input. The model
forms abstract models
of the data, so no actual
label is given to any
category. The idea is
that a category is de-
scribed by average fea-
ture values and a
measure of the spread
of feature values. Itis
the model’s task to
minimize the complex-
ity of sets of categories
while maximizing the
probability of correctly
identifying the cat-
egory of any example
given the feature val-
ues. This can be done
using inference on a
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belief network. The

parent categories con-

sist of graded conceptual categories in-
volving the animal types. For example,
the large animal category should include
whale and cow as salient examples, with
wolf possibly having graded membership.
Graded membership is not represented ex-
plicitly, however. The model will keep
track of one best prototype, which can be
updated with a given probability during
comparison tasks, Conceptual categories
are constructed using the different fea-
tures associated with animals. In particu-
lar, large, small, cute, hideous, ferocious,
and tame animal were used. Ideally, other
objects could be modeled as well, allowing
the conceptual categories to be simply
large, small, cute, hideous, etc. This makes
the model more general, less domain-de-
pendent, but harder to assess.

Third, inferences and comparisons
done on particular members of basic cat-
egories are necessary for learning and
structuring both basic and parent catego-
ries. Here the focus is on feature value
comparisons. A question that can be
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asked is, for example, “which animal is
larger, cat or frog?” Luo [4] reviews these
tasks. In modeling early development,
the semantic priming that results from
querying the subject is associated with
changes in the underlying categories.
The claim is that these changes result
from comparison of basic category fea-
ture values with prototype feature val-
ues. In the example above, size feature
values for cat and frog are compared
with the prototype large animal feature
value. Changes are made to the abstract
categorical representations of cat and
frog size values and spreads. Prototype
values are updated as needed. One natu-
ral question that arises is: if feature value
estimates are already kept by our basic
category representation, could not one
just compare the estimates and return the
appropriate category (in this case, cat for
the larger animal)? There are three prob-
lems with this approach. First, the ap-
proach predicts that all comparisons
should take the same amount of time on
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average. This has been shown to be false
[2]. For example, it is much faster to de-
cide between whale and ant than cat and
frog. Second, the approach predicts that
no errors could occur. For example,
frogs would always be judged smaller
than cats. This does not hold experimen-
tally [4]. What is necessary is a model
that is generally true, but can give wrong
answers in some contexts. Third, there
are uncertainties associated with feature
estimates and this is why a measure of
spread is needed. As more examples of
cats are shown to the system, the model
becomes better at estimating the relative
size of cats, but it is never absolutely sure
that cats are smaller than wolves. The
approach is to compare cat and wolf
sizes with the prototypical size. Rela-
tive distances between category and pro-
totype size feature values can then model
differences in judgment reaction times.
This approach can be thought of as a
variance reduction technique. Knowl-

put into tuiegury if S|m||ur else
new category

edge about prototypical cases, which
also have associated uncertainty values,
is leveraged.

Fourth, there exist abstract category
representations in the mind indepen-
dent of but influenced by linguistic la-
bels. This model keeps abstract
categories with no particular linguistic
interpretation. This model of the mind
relies on generalization over similar
word senses. Hence, frog and toad may
refer to relatively similar animals that
have similar values with respect to the
set of features. A child may not be able
to distinguish (at least at first) between
these similar animal types. Thus a struc-
ture is needed that represents the features
of a frog-toad without labeling it. It is
possible then to compare these abstract
categories amongst themselves and per-
form inferences purely on the basis of
feature structures. Words with different
senses (cat, for example) are described
by different categories while different

words denoting animals with similar
features (e.g. frogs and toads) are de-
scribed by the same category. In the fu-
ture the linguistic label associated with
an abstract category can, hopefully, be
shown as a probability distribution over
words or phrases acquired from experi-
ence. Instead of saying, for example, that
the word cat has two senses (kitty and
tiger), it'll be possible to say that abstract
category A has a probability of 0.95 of
being labeled “cat” and abstract cat-
egory B has a probability of 0.5 of being
labeled “cat.” With experience, the ab-
stract categories become finer because the
variances of the feature values become
smaller. In the limit of infinite experi-
ence, the two word senses of “cat” will
be described by separate abstract catego-
ries with labeling probability 1.0, be-
cause a separate abstract category will
describe “tiger” with probability 1.0, It
is also hoped that someone will prove
the following claim: given a pre-defined,

~ mergeCategoryModel

keep merging if found

compure exumple feutures
update model
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finite, sufficiently “nice” set of training
examples, the category partitions formed
by the algorithm will converge in prob-
ability to a set of non-overlapping cat-
egory distributions (in the sense of zero
variance feature values) as the number
of sweeps goes to infinity. This state-
ment would then imply that each cat-
egory would eventually be labeled by its
own word. For now, it is assumed that
most likely labels are found magically
by some other mechanism. Itis not nec-
essary to worry about possible ambigu-
ity here because the comparison
simulations are done with abstract cat-
egories and the prototypes generalize
over the entire domain independently of
particular word labels. Note, however,
that a prototype is a single instance from
the basic categories. When humans are
confronted with a question regarding
size they don’t automatically think of a
whale. The assumption here is that hu-
mans perform subconscious compari-
sons with a vague superordinate
prototype whose variance is averaged
over a few salient examples.

Lastly, it is assumed that this direct
representation of human semantic pro-
cessing can be efficiently implemented
neurally. One approach is to translate
the mean-variance representation into a
simple Bayesian network. This will be
described after the model and the algo-

Leit: High-level overview of the algorithm. Right: A Bayesian
network implementation.

Category

rithm.
Model

The basic claim of the model is that
the meaning of a noun in some restricted
domain is its abstract representation in
relation to all other nouns in the do-
main[1]. Moreover, this relationship is
captured by comparisons with sets of
superordinate prototypes that capture
general characteristics of objects referred
to by basic terms.

The model acquires basic category
representations by merging abstract
models of category partitions and by
performing inferences and comparisons
using these abstract partitions. It is as-
sumed that implicit reinforcements for
correct and incorrect responses have
been provided internally. This model
controlled experimental paradigms in
which the subject is given a pair of ob-
jects whose feature values fall on some
subjective scale. Errors are frequently
caused by priming and going too fast.
Moreover, learning probability distribu-
tions for category labels is assumed to
be incremental, so it is not necessary to
tell the subject not to say something, be-
cause it will not be said as predicted.

Thus, the model has abstract catego-
ries that model the internal representa-
tions of nouns and learning mechanisms
that takes knowledge from the real
world, and reconstructs, as best as they
can, the entities that the nouns represent,

using comparison-based implicit
learning [5]. Note that for
the domain presented

large (bin)
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here, this consists only of two hierarchi-
cal levels. Extensions beyond animal
types can be constructed by treating each
superordinate category as also a basic
category.

Algorithm

Both model merging and prototype
formation depend on order of data pre-
sentation. Since any possible merge with
lower cost will be performed, there is a
chance that the optimal merge will not
be performed. Similarly, since early ex-
perience is weighted more heavily in
prototype formation, it is possible to get
unrepresentative prototypes fairly late
into the learning process.

Prototype acquisition is modeled as
“Markov.” That is, the mean feature
value for a prototype is drawn from ei-
ther the current value or the maximum
(or minimum) value over subordinate
categories. As the model accumulates
experience, it tends to stay with the cur-
rent value; initially, it tends to choose
the optimal value. The idea is that a
single basic category instance serves as
the prototype, but that the variance as-
sociated with the prototype is estimated
from the current variance and the differ-
ence between the optimal value and the
current value. Hence, the model forgets
the past because the current prototype
value variance captures all that is
needed to know about past prototype
values. The reason for this design deci-
sion is the seemingly transient nature of
a prototype. When people think of a cat,
they are basing their estimates on prior
knowledge about distributions of fea-
ture values of a cat. When people think
of a large animal, however, they first
think of the idea of large before thinking
of a prototype. People do not know ev-
erything about this prototype animal but
they do know thatitis large. After using
this information, the prototype is put
away. The claim here is that not all the
feature value distributions of any proto-
type of any superordinate category are
known. Given this assumption, one sen-
sible model would be to base the proto-
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type on either the last prototype or the
best possible prototype. The probability
of choosing between the two depends on
experience. Asmore and more examples
are observed, it becomes less likely to
switch to the best possible prototype,
because the current prototype must al-
ready be pretty good.

Here is a walkthrough of the algo-
rithm in detail. First, random examples
are created consisting of size, cuteness,
and ferocity values for our animal types
(ant, snail, frog, cat, wolf, cow, and
whale), with noisy examples given ran-
dom features values. Next, the data is
given to the model incrementally. The
model first scans through the categories
to see if the new example can be put into
an existing category. If not, a new cat-
egory is constructed. After a few data
incorporation steps, the merging algo-
rithmis invoked. The cost of every pair
of possible merges is computed and the
best merge to perform is chosen. The first
merge is performed with a higher prob-
ability (lower cost) than the probability

category feature values. Theidea is that
for a set of data, a smaller model is a bet-
ter, more succinct description of an un-
derlying representation. Therefore, it is
desirable to minimize the size of the par-
tition by merging categories together.
But merging requires the re-computation
of the variance of feature values for the
resulting category, which can increase
because the two categories to be merged
are distinct. This should be kept low if
good predictions are to be made about
which category a novel set of feature val-
ues belongs to. Thus there is a trade-off
between compactness and representa-
tional power. The algorithm will keep
finding and merging categories until a
merge with a lower cost cannot be found.

Between data incorporation steps, the
query mechanism is periodically in-
voked, which models implicit compari-
sons that facilitate category learning.
The prototypes are first updated
probabilistically by taking on the param-
eters modeling the experience of a child.
A past experience factor (pef) between 0

egories that correspond to the querying
examples are found. These categories
are compared with the prototype catego-
ries for each feature. The categories are
explicitly changed by a small amount
that is related to pef. The larger category
is moved toward the value of the larger
prototype, the smaller category toward
the value of the smaller prototype, and
similarly for cuteness and ferocity. The
idea is that given a pair of examples, the
model is asked to choose, for example,
which animal is larger. The target ex-
ample is coded as being large and the
rejected example as being small. This
primes future judgments on both of the
examples [4]. Specifically, the internal
representation of the target and rejected
examples are changed by some small
factor determined by experience and by
the distance between feature values of
examples and prototypes. Note that the
prototype representation can also be
changed if the target example feature
value is “more optimal” than the proto-
type feature value. This can happen be-
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(cost) of the original model. The basic
idea is to try and maximize

P(Model | Data) which is equivalent
to P(Data| Model) - P(Model) / P(Data).

Here P(Data) can be ignored since it is
the same for any merge. This equation
is then translated to:

cost(Model) being equal to

o - size (Model) + (1 — o) - var(Model),
where size(Medel) is the total number of
categories (i.e. the size of the partition),
and var(Model) is the total variance of all

22 California Engineer

and 1 is defined that is initially small,
but becomes larger as the number of
sweeps increases. With probability 1
minus pef, the superordinate prototypes
are replaced (large animal, small animal,
cute animal, hideous animal, ferocious
animal, tame animal) with the example
with the optimal feature value in the cat-
egory partition. Since pef increases with
time, the model is less likely to change
prototypes as it obtains more and more
experience. Next, the best matching cat-

cause the prototypes are only updated
probabilistically so the prototypes may
not be the best.

It is possible to translate the model to
a Bayesian network. As suggested by
Koller & Sahami [3], the categories can
be represented as discrete nodes that
serve as parents of Gaussian feature
nodes. Thus the statistics for each fea-
ture are specified and query the category
node given the feature evidence. The
problem is to implement an unsuper-
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vised learning algorithm that updates
the values that the category node can
take on as more evidence arrives. Here,
independence of each feature value is as-
sumed. The superordinate category
node “large” is a binary representation
of a “decision” based on current feature
estimates. Note that prototype values are
keptimplicitly within the distribution for
the superordinate node. It may be better
to use decision nodes for the
superordinate category nodes, but
whether inference would work is still in
question,

Results

In general, category partitions learned
using feature comparisons tend to gen-
eralize a bit more, so that a smaller num-
ber of categories results. Note that one
obvious problem with the model merg-
ing algorithm is that it tends to give in-
accurate values for animals whose size
is small.

Itis possible to change the parameters
of both the model merging and the fea-

assumed that in the presence of small
sample sizes, humans still believe that
the distribution of feature values in the
real world is approximately normal for
each distinct animal. More reasonable
approaches involving the Dirichlet den-
sity can be found in Anderson [1]. Itis
also assumed that each feature compari-
son task occurs regularly and that all
features of a category are compared. In
the real world, this is rarely the case. A
person might be led into comparing, for
example, sizes more than cuteness, and
cats and dogs more often than polar
bears and lady bugs. A proper model
for comparison tasks in early language
acquisition would involve modeling the
world in which the child lives, which is
beyond present scope and capabilities.
Note also that the independence of each
feature given the category is assumed,
which cannot be a true model of the
world. Finally, the model assumes that
model merging and feature comparison
happen independently. Note, however,
that depending on the current compari-

i
8
1 " N
i _—
£
:;;s 5
i, i
=10y Tt ) 0 W [ ) i R i ) 0 (] ] i 70 )
oz o S Namber o bwmen
H i
. L4 .
& L 4 - .
. ¢ -
-
% ! L] . -;‘ -
j? . § 24
al T ¥ i 3 i i i —54 7 i i i i T i
[rp—— sari Loy ekel
8 o % J x x
[ x ] =
= e
g x i x
3 x 2 x
§? X i x
&1 7 7 T 3 § 7 i, &Y ¥ 7 i ¥ i i i
{xnmpl (riegary zéal Lsarmpds (ntogery {nked

ture comparison algorithms. Over many
iterations of the experiment, itis discov-
ered that feature comparison tends to do
wonders when pef is set to be small (R
0.1). In that case, feature comparison
tends to generalize more than model
merging alone.

Discussion

This Bayesian model-merging algo-
rithm applied to category-acquisition is
not without its faults. For example, it is

son task, it might be more or less suit-
able to merge disjoint categories. For ex-
ample, consider the comparison of
cardinals and blue jays. The model does
not have much of an idea of what they
are and might consider them to be close
to each other in size. Are they also in
one category?

One other proposal would be to treat
the problem as minimization of Boolean
complexity given features and examples.
The best model is that which minimizes
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the minimal formula associated with the
disjunctive normal form of the evidence
written in conjunction with features and
disjunction among examples. This has
not been worked out yet.

The Bayesian network representa-
tion still needs to be explored thor-
oughly. A way in which learning of
category values will work for a Bayes
net still needs to be worked out.
Superordinate category representation
can also be improved. One idea is to
use separate nodes for each category
value (ie. animal name). Then all the
model has to do is prune the network
as more evidence arrives. The prob-
lem is that each node would be the par-
ent of the feature values. Hence each
augmentation of a feature adds O(k)
links, where k is the number of values
a category can take on. The model
should also allow feature values to link
with each other, thereby removing the
feature value independence assump-
tion.

This model has presented a Bayesian
approach to learning category represen-
tation. It can be seen that learning is
[facilitated by implicit interactions with
the real world. Here, the focus is on fea-
ture comparison and priming. The prin-

iple, however, is more general. In
|m0deling domain knowledge, the vari-
lous contexts in which a name can occur
land the various interpretations the name
lcan take on with respect to
|superordinate category prototypes need
Jto be considered.
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Matlab code {or the algodthmcanbe found at http//insteecs berkeley edu/ "o/
categ_leam_doc/ categ leamsip.

Runthe flekeam_animal_categores nM i exp ting, Yoo shoukd have
the BNT tookit installed http//www.cs berkeloy.edu” murphykBayes!
recuest.hirrl
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